Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
9.7 KiB
279 lines
9.7 KiB
#include <opencv2/opencv.hpp> |
|
#include <vector> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help() |
|
{ |
|
cout << "\n This program demonstrates how to use BLOB and MSER to detect region \n" |
|
"Usage: \n" |
|
" ./BLOB_MSER <image1(../data/forme2.jpg as default)>\n" |
|
"Press a key when image window is active to change descriptor"; |
|
} |
|
|
|
struct MSERParams |
|
{ |
|
MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400, |
|
double _max_variation = 0.25, double _min_diversity = .2, |
|
int _max_evolution = 200, double _area_threshold = 1.01, |
|
double _min_margin = 0.003, int _edge_blur_size = 5) |
|
{ |
|
delta = _delta; |
|
minArea = _min_area; |
|
maxArea = _max_area; |
|
maxVariation = _max_variation; |
|
minDiversity = _min_diversity; |
|
maxEvolution = _max_evolution; |
|
areaThreshold = _area_threshold; |
|
minMargin = _min_margin; |
|
edgeBlurSize = _edge_blur_size; |
|
pass2Only = false; |
|
} |
|
|
|
int delta; |
|
int minArea; |
|
int maxArea; |
|
double maxVariation; |
|
double minDiversity; |
|
bool pass2Only; |
|
|
|
int maxEvolution; |
|
double areaThreshold; |
|
double minMargin; |
|
int edgeBlurSize; |
|
}; |
|
|
|
String Legende(SimpleBlobDetector::Params &pAct) |
|
{ |
|
String s=""; |
|
if (pAct.filterByArea) |
|
{ |
|
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minArea))->str(); |
|
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxArea))->str(); |
|
s = " Area range [" + inf + " to " + sup + "]"; |
|
} |
|
if (pAct.filterByCircularity) |
|
{ |
|
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minCircularity))->str(); |
|
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxCircularity))->str(); |
|
if (s.length()==0) |
|
s = " Circularity range [" + inf + " to " + sup + "]"; |
|
else |
|
s += " AND Circularity range [" + inf + " to " + sup + "]"; |
|
} |
|
if (pAct.filterByColor) |
|
{ |
|
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.blobColor))->str(); |
|
if (s.length() == 0) |
|
s = " Blob color " + inf; |
|
else |
|
s += " AND Blob color " + inf; |
|
} |
|
if (pAct.filterByConvexity) |
|
{ |
|
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minConvexity))->str(); |
|
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxConvexity))->str(); |
|
if (s.length() == 0) |
|
s = " Convexity range[" + inf + " to " + sup + "]"; |
|
else |
|
s += " AND Convexity range[" + inf + " to " + sup + "]"; |
|
} |
|
if (pAct.filterByInertia) |
|
{ |
|
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minInertiaRatio))->str(); |
|
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxInertiaRatio))->str(); |
|
if (s.length() == 0) |
|
s = " Inertia ratio range [" + inf + " to " + sup + "]"; |
|
else |
|
s += " AND Inertia ratio range [" + inf + " to " + sup + "]"; |
|
} |
|
return s; |
|
} |
|
|
|
|
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
vector<String> fileName; |
|
if (argc == 1) |
|
{ |
|
fileName.push_back("../data/BLOB_MSER.bmp"); |
|
} |
|
else if (argc == 2) |
|
{ |
|
fileName.push_back(argv[1]); |
|
} |
|
else |
|
{ |
|
help(); |
|
return(0); |
|
} |
|
Mat img = imread(fileName[0], IMREAD_GRAYSCALE); |
|
if (img.rows*img.cols <= 0) |
|
{ |
|
cout << "Image " << fileName[0] << " is empty or cannot be found\n"; |
|
return(0); |
|
} |
|
|
|
SimpleBlobDetector::Params pDefaultBLOB; |
|
MSERParams pDefaultMSER; |
|
// This is default parameters for SimpleBlobDetector |
|
pDefaultBLOB.thresholdStep = 10; |
|
pDefaultBLOB.minThreshold = 10; |
|
pDefaultBLOB.maxThreshold = 220; |
|
pDefaultBLOB.minRepeatability = 2; |
|
pDefaultBLOB.minDistBetweenBlobs = 10; |
|
pDefaultBLOB.filterByColor = false; |
|
pDefaultBLOB.blobColor = 0; |
|
pDefaultBLOB.filterByArea = false; |
|
pDefaultBLOB.minArea = 25; |
|
pDefaultBLOB.maxArea = 5000; |
|
pDefaultBLOB.filterByCircularity = false; |
|
pDefaultBLOB.minCircularity = 0.9f; |
|
pDefaultBLOB.maxCircularity = std::numeric_limits<float>::max(); |
|
pDefaultBLOB.filterByInertia = false; |
|
pDefaultBLOB.minInertiaRatio = 0.1f; |
|
pDefaultBLOB.maxInertiaRatio = std::numeric_limits<float>::max(); |
|
pDefaultBLOB.filterByConvexity = false; |
|
pDefaultBLOB.minConvexity = 0.95f; |
|
pDefaultBLOB.maxConvexity = std::numeric_limits<float>::max(); |
|
// Descriptor array (BLOB or MSER) |
|
vector<String> typeDesc; |
|
// Param array for BLOB |
|
vector<SimpleBlobDetector::Params> pBLOB; |
|
vector<SimpleBlobDetector::Params>::iterator itBLOB; |
|
// Param array for MSER |
|
vector<MSERParams> pMSER; |
|
vector<MSERParams>::iterator itMSER; |
|
|
|
// Color palette |
|
vector<Vec3b> palette; |
|
for (int i=0;i<65536;i++) |
|
palette.push_back(Vec3b(rand(),rand(),rand())); |
|
help(); |
|
|
|
typeDesc.push_back("MSER"); |
|
pMSER.push_back(pDefaultMSER); |
|
pMSER.back().delta=0; |
|
pMSER.back().minArea = 25; |
|
pMSER.back().maxArea = 80000; |
|
pMSER.back().maxVariation= 0.5; |
|
pMSER.back().minDiversity=0.8; // variation de taille entre deux seuillages ? |
|
pMSER.back().areaThreshold= 200; |
|
pMSER.back().maxEvolution = 1.01; |
|
pMSER.back().minMargin=0.003; |
|
pMSER.back().edgeBlurSize= 5; |
|
typeDesc.push_back("BLOB"); |
|
pBLOB.push_back(pDefaultBLOB); |
|
pBLOB.back().filterByColor = true; |
|
pBLOB.back().blobColor = 0; |
|
|
|
// This descriptor are going to be detect and compute 4 BLOBS with 4 differents params |
|
// Param for first BLOB detector we want all |
|
typeDesc.push_back("BLOB"); // see http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html |
|
pBLOB.push_back(pDefaultBLOB); |
|
pBLOB.back().filterByArea = true; |
|
pBLOB.back().minArea = 1; |
|
pBLOB.back().maxArea = img.rows*img.cols; |
|
// Param for second BLOB detector we want area between 500 and 2900 pixels |
|
typeDesc.push_back("BLOB"); |
|
pBLOB.push_back(pDefaultBLOB); |
|
pBLOB.back().filterByArea = true; |
|
pBLOB.back().minArea = 500; |
|
pBLOB.back().maxArea = 2900; |
|
// Param for third BLOB detector we want only circular object |
|
typeDesc.push_back("BLOB"); |
|
pBLOB.push_back(pDefaultBLOB); |
|
pBLOB.back().filterByCircularity = true; |
|
// Param for Fourth BLOB detector we want ratio inertia |
|
typeDesc.push_back("BLOB"); |
|
pBLOB.push_back(pDefaultBLOB); |
|
pBLOB.back().filterByInertia = true; |
|
pBLOB.back().minInertiaRatio = 0; |
|
pBLOB.back().maxInertiaRatio = 0.2; |
|
// Param for Fourth BLOB detector we want ratio inertia |
|
typeDesc.push_back("BLOB"); |
|
pBLOB.push_back(pDefaultBLOB); |
|
pBLOB.back().filterByConvexity = true; |
|
pBLOB.back().minConvexity = 0.; |
|
pBLOB.back().maxConvexity = 0.9; |
|
|
|
|
|
itBLOB = pBLOB.begin(); |
|
itMSER = pMSER.begin(); |
|
vector<double> desMethCmp; |
|
Ptr<Feature2D> b; |
|
String label; |
|
// Descriptor loop |
|
vector<String>::iterator itDesc; |
|
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++) |
|
{ |
|
vector<KeyPoint> keyImg1; |
|
if (*itDesc == "BLOB"){ |
|
b = SimpleBlobDetector::create(*itBLOB); |
|
label=Legende(*itBLOB); |
|
|
|
itBLOB++; |
|
} |
|
if (*itDesc == "MSER"){ |
|
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution, |
|
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize); |
|
b.dynamicCast<MSER>()->setPass2Only(true); |
|
//b = MSER::create(); |
|
} |
|
try { |
|
// We can detect keypoint with detect method |
|
vector<KeyPoint> keyImg; |
|
vector<Rect> zone; |
|
vector<vector <Point>> region; |
|
Mat desc, result(img.rows,img.cols,CV_8UC3); |
|
int nb = img.channels(); |
|
|
|
|
|
if (b.dynamicCast<SimpleBlobDetector>() != NULL) |
|
{ |
|
Ptr<SimpleBlobDetector> sbd = b.dynamicCast<SimpleBlobDetector>(); |
|
sbd->detect(img, keyImg, Mat()); |
|
drawKeypoints(img,keyImg,result); |
|
int i=0; |
|
for (vector<KeyPoint>::iterator k=keyImg.begin();k!=keyImg.end();k++,i++) |
|
circle(result,k->pt,k->size,palette[i%65536]); |
|
} |
|
if (b.dynamicCast<MSER>() != NULL) |
|
{ |
|
Ptr<MSER> sbd = b.dynamicCast<MSER>(); |
|
sbd->detectRegions(img, region, zone); |
|
int i = 0; |
|
|
|
for (vector<Rect>::iterator r = zone.begin(); r != zone.end();r++,i++) |
|
{ |
|
// we draw a white rectangle which include all region pixels |
|
rectangle(result, *r, Vec3b(255, 255, 255), 2); |
|
} |
|
i=0; |
|
for (vector<vector <Point>>::iterator itr = region.begin(); itr != region.end(); itr++, i++) |
|
{ |
|
for (vector <Point>::iterator itp = region[i].begin(); itp != region[i].end(); itp++) |
|
{ |
|
// all pixels belonging to region are red |
|
result.at<Vec3b>(itp->y, itp->x) = Vec3b(0,0,128); |
|
} |
|
} |
|
} |
|
namedWindow(*itDesc+label , WINDOW_AUTOSIZE); |
|
imshow(*itDesc + label, result); |
|
imshow("Original", img); |
|
FileStorage fs(*itDesc + "_" + fileName[0] + ".xml", FileStorage::WRITE); |
|
fs<<*itDesc<<keyImg; |
|
waitKey(); |
|
} |
|
catch (Exception& e) |
|
{ |
|
cout << "Feature : " << *itDesc << "\n"; |
|
cout<<e.msg<<endl; |
|
} |
|
} |
|
return 0; |
|
}
|
|
|