Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

163 lines
4.0 KiB

/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef DATASET_H
#define DATASET_H
#include <stdio.h>
#include <random.h>
namespace cvflann
{
/**
* Class implementing a generic rectangular dataset.
*/
template <typename T>
class Matrix {
/**
* Flag showing if the class owns its data storage.
*/
bool ownData;
void shallow_copy(const Matrix& rhs)
{
data = rhs.data;
rows = rhs.rows;
cols = rhs.cols;
ownData = false;
}
public:
long rows;
long cols;
T* data;
Matrix(long rows_, long cols_, T* data_ = NULL) :
ownData(false), rows(rows_), cols(cols_), data(data_)
{
if (data_==NULL) {
data = new T[rows*cols];
ownData = true;
}
}
Matrix(const Matrix& d)
{
shallow_copy(d);
}
const Matrix& operator=(const Matrix& rhs)
{
if (this!=&rhs) {
shallow_copy(rhs);
}
return *this;
}
~Matrix()
{
if (ownData) {
delete[] data;
}
}
/**
* Operator that return a (pointer to a) row of the data.
*/
T* operator[](long index)
{
return data+index*cols;
}
T* operator[](long index) const
{
return data+index*cols;
}
Matrix<T>* sample(long size, bool remove = false)
{
UniqueRandom rand(rows);
Matrix<T> *newSet = new Matrix<T>(size,cols);
T *src,*dest;
for (long i=0;i<size;++i) {
long r = rand.next();
dest = (*newSet)[i];
src = (*this)[r];
for (long j=0;j<cols;++j) {
dest[j] = src[j];
}
if (remove) {
dest = (*this)[rows-i-1];
src = (*this)[r];
for (long j=0;j<cols;++j) {
swap(*src,*dest);
src++;
dest++;
}
}
}
if (remove) {
rows -= size;
}
return newSet;
}
Matrix<T>* sample(long size) const
{
UniqueRandom rand(rows);
Matrix<T> *newSet = new Matrix<T>(size,cols);
T *src,*dest;
for (long i=0;i<size;++i) {
long r = rand.next();
dest = (*newSet)[i];
src = (*this)[r];
for (long j=0;j<cols;++j) {
dest[j] = src[j];
}
}
return newSet;
}
};
}
#endif //DATASET_H