mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
316 lines
12 KiB
316 lines
12 KiB
/* |
|
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved. |
|
* |
|
* NVIDIA Corporation and its licensors retain all intellectual |
|
* property and proprietary rights in and to this software and |
|
* related documentation and any modifications thereto. |
|
* Any use, reproduction, disclosure, or distribution of this |
|
* software and related documentation without an express license |
|
* agreement from NVIDIA Corporation is strictly prohibited. |
|
*/ |
|
|
|
#if !defined CUDA_DISABLER |
|
|
|
#include <float.h> |
|
|
|
#if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) |
|
#include <fpu_control.h> |
|
#endif |
|
|
|
namespace |
|
{ |
|
// http://www.christian-seiler.de/projekte/fpmath/ |
|
class FpuControl |
|
{ |
|
public: |
|
FpuControl(); |
|
~FpuControl(); |
|
|
|
private: |
|
#if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) |
|
fpu_control_t fpu_oldcw, fpu_cw; |
|
#elif defined(_WIN32) && !defined(_WIN64) |
|
unsigned int fpu_oldcw, fpu_cw; |
|
#endif |
|
}; |
|
|
|
FpuControl::FpuControl() |
|
{ |
|
#if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) |
|
_FPU_GETCW(fpu_oldcw); |
|
fpu_cw = (fpu_oldcw & ~_FPU_EXTENDED & ~_FPU_DOUBLE & ~_FPU_SINGLE) | _FPU_SINGLE; |
|
_FPU_SETCW(fpu_cw); |
|
#elif defined(_WIN32) && !defined(_WIN64) |
|
_controlfp_s(&fpu_cw, 0, 0); |
|
fpu_oldcw = fpu_cw; |
|
_controlfp_s(&fpu_cw, _PC_24, _MCW_PC); |
|
#endif |
|
} |
|
|
|
FpuControl::~FpuControl() |
|
{ |
|
#if defined(__GNUC__) && !defined(__APPLE__) && !defined(__arm__) |
|
_FPU_SETCW(fpu_oldcw); |
|
#elif defined(_WIN32) && !defined(_WIN64) |
|
_controlfp_s(&fpu_cw, fpu_oldcw, _MCW_PC); |
|
#endif |
|
} |
|
} |
|
|
|
#include "TestHaarCascadeApplication.h" |
|
#include "NCVHaarObjectDetection.hpp" |
|
|
|
|
|
TestHaarCascadeApplication::TestHaarCascadeApplication(std::string testName_, NCVTestSourceProvider<Ncv8u> &src_, |
|
std::string cascadeName_, Ncv32u width_, Ncv32u height_) |
|
: |
|
NCVTestProvider(testName_), |
|
src(src_), |
|
cascadeName(cascadeName_), |
|
width(width_), |
|
height(height_) |
|
{ |
|
} |
|
|
|
|
|
bool TestHaarCascadeApplication::toString(std::ofstream &strOut) |
|
{ |
|
strOut << "cascadeName=" << cascadeName << std::endl; |
|
strOut << "width=" << width << std::endl; |
|
strOut << "height=" << height << std::endl; |
|
return true; |
|
} |
|
|
|
|
|
bool TestHaarCascadeApplication::init() |
|
{ |
|
return true; |
|
} |
|
|
|
bool TestHaarCascadeApplication::process() |
|
{ |
|
NCVStatus ncvStat; |
|
bool rcode = false; |
|
|
|
Ncv32u numStages, numNodes, numFeatures; |
|
|
|
ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages); |
|
ncvAssertReturn(h_HaarStages.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes); |
|
ncvAssertReturn(h_HaarNodes.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures); |
|
ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false); |
|
|
|
NCVVectorAlloc<HaarStage64> d_HaarStages(*this->allocatorGPU.get(), numStages); |
|
ncvAssertReturn(d_HaarStages.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarClassifierNode128> d_HaarNodes(*this->allocatorGPU.get(), numNodes); |
|
ncvAssertReturn(d_HaarNodes.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarFeature64> d_HaarFeatures(*this->allocatorGPU.get(), numFeatures); |
|
ncvAssertReturn(d_HaarFeatures.isMemAllocated(), false); |
|
|
|
HaarClassifierCascadeDescriptor haar; |
|
haar.ClassifierSize.width = haar.ClassifierSize.height = 1; |
|
haar.bNeedsTiltedII = false; |
|
haar.NumClassifierRootNodes = numNodes; |
|
haar.NumClassifierTotalNodes = numNodes; |
|
haar.NumFeatures = numFeatures; |
|
haar.NumStages = numStages; |
|
|
|
NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); |
|
NCV_SKIP_COND_BEGIN |
|
|
|
ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
ncvAssertReturn(NCV_SUCCESS == h_HaarStages.copySolid(d_HaarStages, 0), false); |
|
ncvAssertReturn(NCV_SUCCESS == h_HaarNodes.copySolid(d_HaarNodes, 0), false); |
|
ncvAssertReturn(NCV_SUCCESS == h_HaarFeatures.copySolid(d_HaarFeatures, 0), false); |
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), false); |
|
|
|
NCV_SKIP_COND_END |
|
|
|
NcvSize32s srcRoi, srcIIRoi, searchRoi; |
|
srcRoi.width = this->width; |
|
srcRoi.height = this->height; |
|
srcIIRoi.width = srcRoi.width + 1; |
|
srcIIRoi.height = srcRoi.height + 1; |
|
searchRoi.width = srcIIRoi.width - haar.ClassifierSize.width; |
|
searchRoi.height = srcIIRoi.height - haar.ClassifierSize.height; |
|
if (searchRoi.width <= 0 || searchRoi.height <= 0) |
|
{ |
|
return false; |
|
} |
|
NcvSize32u searchRoiU(searchRoi.width, searchRoi.height); |
|
|
|
NCVMatrixAlloc<Ncv8u> d_img(*this->allocatorGPU.get(), this->width, this->height); |
|
ncvAssertReturn(d_img.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv8u> h_img(*this->allocatorCPU.get(), this->width, this->height); |
|
ncvAssertReturn(h_img.isMemAllocated(), false); |
|
|
|
Ncv32u integralWidth = this->width + 1; |
|
Ncv32u integralHeight = this->height + 1; |
|
|
|
NCVMatrixAlloc<Ncv32u> d_integralImage(*this->allocatorGPU.get(), integralWidth, integralHeight); |
|
ncvAssertReturn(d_integralImage.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv64u> d_sqIntegralImage(*this->allocatorGPU.get(), integralWidth, integralHeight); |
|
ncvAssertReturn(d_sqIntegralImage.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv32u> h_integralImage(*this->allocatorCPU.get(), integralWidth, integralHeight); |
|
ncvAssertReturn(h_integralImage.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv64u> h_sqIntegralImage(*this->allocatorCPU.get(), integralWidth, integralHeight); |
|
ncvAssertReturn(h_sqIntegralImage.isMemAllocated(), false); |
|
|
|
NCVMatrixAlloc<Ncv32f> d_rectStdDev(*this->allocatorGPU.get(), this->width, this->height); |
|
ncvAssertReturn(d_rectStdDev.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv32u> d_pixelMask(*this->allocatorGPU.get(), this->width, this->height); |
|
ncvAssertReturn(d_pixelMask.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv32f> h_rectStdDev(*this->allocatorCPU.get(), this->width, this->height); |
|
ncvAssertReturn(h_rectStdDev.isMemAllocated(), false); |
|
NCVMatrixAlloc<Ncv32u> h_pixelMask(*this->allocatorCPU.get(), this->width, this->height); |
|
ncvAssertReturn(h_pixelMask.isMemAllocated(), false); |
|
|
|
NCVVectorAlloc<NcvRect32u> d_hypotheses(*this->allocatorGPU.get(), this->width * this->height); |
|
ncvAssertReturn(d_hypotheses.isMemAllocated(), false); |
|
NCVVectorAlloc<NcvRect32u> h_hypotheses(*this->allocatorCPU.get(), this->width * this->height); |
|
ncvAssertReturn(h_hypotheses.isMemAllocated(), false); |
|
|
|
NCVStatus nppStat; |
|
Ncv32u szTmpBufIntegral, szTmpBufSqIntegral; |
|
nppStat = nppiStIntegralGetSize_8u32u(NcvSize32u(this->width, this->height), &szTmpBufIntegral, this->devProp); |
|
ncvAssertReturn(nppStat == NPPST_SUCCESS, false); |
|
nppStat = nppiStSqrIntegralGetSize_8u64u(NcvSize32u(this->width, this->height), &szTmpBufSqIntegral, this->devProp); |
|
ncvAssertReturn(nppStat == NPPST_SUCCESS, false); |
|
NCVVectorAlloc<Ncv8u> d_tmpIIbuf(*this->allocatorGPU.get(), std::max(szTmpBufIntegral, szTmpBufSqIntegral)); |
|
ncvAssertReturn(d_tmpIIbuf.isMemAllocated(), false); |
|
|
|
Ncv32u detectionsOnThisScale_d = 0; |
|
Ncv32u detectionsOnThisScale_h = 0; |
|
|
|
NCV_SKIP_COND_BEGIN |
|
|
|
ncvAssertReturn(this->src.fill(h_img), false); |
|
ncvStat = h_img.copySolid(d_img, 0); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
ncvAssertCUDAReturn(cudaStreamSynchronize(0), false); |
|
|
|
nppStat = nppiStIntegral_8u32u_C1R(d_img.ptr(), d_img.pitch(), |
|
d_integralImage.ptr(), d_integralImage.pitch(), |
|
NcvSize32u(d_img.width(), d_img.height()), |
|
d_tmpIIbuf.ptr(), szTmpBufIntegral, this->devProp); |
|
ncvAssertReturn(nppStat == NPPST_SUCCESS, false); |
|
|
|
nppStat = nppiStSqrIntegral_8u64u_C1R(d_img.ptr(), d_img.pitch(), |
|
d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(), |
|
NcvSize32u(d_img.width(), d_img.height()), |
|
d_tmpIIbuf.ptr(), szTmpBufSqIntegral, this->devProp); |
|
ncvAssertReturn(nppStat == NPPST_SUCCESS, false); |
|
|
|
const NcvRect32u rect( |
|
HAAR_STDDEV_BORDER, |
|
HAAR_STDDEV_BORDER, |
|
haar.ClassifierSize.width - 2*HAAR_STDDEV_BORDER, |
|
haar.ClassifierSize.height - 2*HAAR_STDDEV_BORDER); |
|
nppStat = nppiStRectStdDev_32f_C1R( |
|
d_integralImage.ptr(), d_integralImage.pitch(), |
|
d_sqIntegralImage.ptr(), d_sqIntegralImage.pitch(), |
|
d_rectStdDev.ptr(), d_rectStdDev.pitch(), |
|
NcvSize32u(searchRoi.width, searchRoi.height), rect, |
|
1.0f, true); |
|
ncvAssertReturn(nppStat == NPPST_SUCCESS, false); |
|
|
|
ncvStat = d_integralImage.copySolid(h_integralImage, 0); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
ncvStat = d_rectStdDev.copySolid(h_rectStdDev, 0); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
for (Ncv32u i=0; i<searchRoiU.height; i++) |
|
{ |
|
for (Ncv32u j=0; j<h_pixelMask.stride(); j++) |
|
{ |
|
if (j<searchRoiU.width) |
|
{ |
|
h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = (i << 16) | j; |
|
} |
|
else |
|
{ |
|
h_pixelMask.ptr()[i*h_pixelMask.stride()+j] = OBJDET_MASK_ELEMENT_INVALID_32U; |
|
} |
|
} |
|
} |
|
ncvAssertReturn(cudaSuccess == cudaStreamSynchronize(0), false); |
|
|
|
{ |
|
// calculations here |
|
FpuControl fpu; |
|
(void) fpu; |
|
|
|
ncvStat = ncvApplyHaarClassifierCascade_host( |
|
h_integralImage, h_rectStdDev, h_pixelMask, |
|
detectionsOnThisScale_h, |
|
haar, h_HaarStages, h_HaarNodes, h_HaarFeatures, false, |
|
searchRoiU, 1, 1.0f); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
} |
|
|
|
NCV_SKIP_COND_END |
|
|
|
int devId; |
|
ncvAssertCUDAReturn(cudaGetDevice(&devId), false); |
|
cudaDeviceProp _devProp; |
|
ncvAssertCUDAReturn(cudaGetDeviceProperties(&_devProp, devId), false); |
|
|
|
ncvStat = ncvApplyHaarClassifierCascade_device( |
|
d_integralImage, d_rectStdDev, d_pixelMask, |
|
detectionsOnThisScale_d, |
|
haar, h_HaarStages, d_HaarStages, d_HaarNodes, d_HaarFeatures, false, |
|
searchRoiU, 1, 1.0f, |
|
*this->allocatorGPU.get(), *this->allocatorCPU.get(), |
|
_devProp, 0); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
NCVMatrixAlloc<Ncv32u> h_pixelMask_d(*this->allocatorCPU.get(), this->width, this->height); |
|
ncvAssertReturn(h_pixelMask_d.isMemAllocated(), false); |
|
|
|
//bit-to-bit check |
|
bool bLoopVirgin = true; |
|
|
|
NCV_SKIP_COND_BEGIN |
|
|
|
ncvStat = d_pixelMask.copySolid(h_pixelMask_d, 0); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
if (detectionsOnThisScale_d != detectionsOnThisScale_h) |
|
{ |
|
bLoopVirgin = false; |
|
} |
|
else |
|
{ |
|
std::sort(h_pixelMask_d.ptr(), h_pixelMask_d.ptr() + detectionsOnThisScale_d); |
|
for (Ncv32u i=0; i<detectionsOnThisScale_d && bLoopVirgin; i++) |
|
{ |
|
if (h_pixelMask.ptr()[i] != h_pixelMask_d.ptr()[i]) |
|
{ |
|
bLoopVirgin = false; |
|
} |
|
} |
|
} |
|
|
|
NCV_SKIP_COND_END |
|
|
|
if (bLoopVirgin) |
|
{ |
|
rcode = true; |
|
} |
|
|
|
return rcode; |
|
} |
|
|
|
|
|
bool TestHaarCascadeApplication::deinit() |
|
{ |
|
return true; |
|
} |
|
|
|
#endif /* CUDA_DISABLER */
|
|
|