mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
630 lines
18 KiB
630 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* //////////////////////////////////////////////////////////////////// |
|
// |
|
// Mat basic operations: Copy, Set |
|
// |
|
// */ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static void |
|
copyMask_(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size) |
|
{ |
|
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep ) |
|
{ |
|
const T* src = (const T*)_src; |
|
T* dst = (T*)_dst; |
|
int x = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x <= size.width - 4; x += 4 ) |
|
{ |
|
if( mask[x] ) |
|
dst[x] = src[x]; |
|
if( mask[x+1] ) |
|
dst[x+1] = src[x+1]; |
|
if( mask[x+2] ) |
|
dst[x+2] = src[x+2]; |
|
if( mask[x+3] ) |
|
dst[x+3] = src[x+3]; |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
if( mask[x] ) |
|
dst[x] = src[x]; |
|
} |
|
} |
|
|
|
template<> static void |
|
copyMask_<uchar>(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size) |
|
{ |
|
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep ) |
|
{ |
|
const uchar* src = (const uchar*)_src; |
|
uchar* dst = (uchar*)_dst; |
|
int x = 0; |
|
#if CV_SSE4_2 |
|
if(USE_SSE4_2)// |
|
{ |
|
__m128i zero = _mm_setzero_si128 (); |
|
|
|
for( ; x <= size.width - 16; x += 16 ) |
|
{ |
|
const __m128i rSrc = _mm_lddqu_si128((const __m128i*)(src+x)); |
|
__m128i _mask = _mm_lddqu_si128((const __m128i*)(mask+x)); |
|
__m128i rDst = _mm_lddqu_si128((__m128i*)(dst+x)); |
|
__m128i _negMask = _mm_cmpeq_epi8(_mask, zero); |
|
rDst = _mm_blendv_epi8(rSrc, rDst, _negMask); |
|
_mm_storeu_si128((__m128i*)(dst + x), rDst); |
|
} |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
if( mask[x] ) |
|
dst[x] = src[x]; |
|
} |
|
} |
|
|
|
template<> static void |
|
copyMask_<ushort>(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size) |
|
{ |
|
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep ) |
|
{ |
|
const ushort* src = (const ushort*)_src; |
|
ushort* dst = (ushort*)_dst; |
|
int x = 0; |
|
#if CV_SSE4_2 |
|
if(USE_SSE4_2)// |
|
{ |
|
__m128i zero = _mm_setzero_si128 (); |
|
for( ; x <= size.width - 8; x += 8 ) |
|
{ |
|
const __m128i rSrc =_mm_lddqu_si128((const __m128i*)(src+x)); |
|
__m128i _mask = _mm_loadl_epi64((const __m128i*)(mask+x)); |
|
_mask = _mm_unpacklo_epi8(_mask, _mask); |
|
__m128i rDst = _mm_lddqu_si128((const __m128i*)(dst+x)); |
|
__m128i _negMask = _mm_cmpeq_epi8(_mask, zero); |
|
rDst = _mm_blendv_epi8(rSrc, rDst, _negMask); |
|
_mm_storeu_si128((__m128i*)(dst + x), rDst); |
|
} |
|
} |
|
#endif |
|
for( ; x < size.width; x++ ) |
|
if( mask[x] ) |
|
dst[x] = src[x]; |
|
} |
|
} |
|
|
|
static void |
|
copyMaskGeneric(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size, void* _esz) |
|
{ |
|
size_t k, esz = *(size_t*)_esz; |
|
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep ) |
|
{ |
|
const uchar* src = _src; |
|
uchar* dst = _dst; |
|
int x = 0; |
|
for( ; x < size.width; x++, src += esz, dst += esz ) |
|
{ |
|
if( !mask[x] ) |
|
continue; |
|
for( k = 0; k < esz; k++ ) |
|
dst[k] = src[k]; |
|
} |
|
} |
|
} |
|
|
|
|
|
#define DEF_COPY_MASK(suffix, type) \ |
|
static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask, size_t mstep, \ |
|
uchar* dst, size_t dstep, Size size, void*) \ |
|
{ \ |
|
copyMask_<type>(src, sstep, mask, mstep, dst, dstep, size); \ |
|
} |
|
|
|
|
|
DEF_COPY_MASK(8u, uchar); |
|
DEF_COPY_MASK(16u, ushort); |
|
DEF_COPY_MASK(8uC3, Vec3b); |
|
DEF_COPY_MASK(32s, int); |
|
DEF_COPY_MASK(16uC3, Vec3s); |
|
DEF_COPY_MASK(32sC2, Vec2i); |
|
DEF_COPY_MASK(32sC3, Vec3i); |
|
DEF_COPY_MASK(32sC4, Vec4i); |
|
DEF_COPY_MASK(32sC6, Vec6i); |
|
DEF_COPY_MASK(32sC8, Vec8i); |
|
|
|
BinaryFunc copyMaskTab[] = |
|
{ |
|
0, |
|
copyMask8u, |
|
copyMask16u, |
|
copyMask8uC3, |
|
copyMask32s, |
|
0, |
|
copyMask16uC3, |
|
0, |
|
copyMask32sC2, |
|
0, 0, 0, |
|
copyMask32sC3, |
|
0, 0, 0, |
|
copyMask32sC4, |
|
0, 0, 0, 0, 0, 0, 0, |
|
copyMask32sC6, |
|
0, 0, 0, 0, 0, 0, 0, |
|
copyMask32sC8 |
|
}; |
|
|
|
BinaryFunc getCopyMaskFunc(size_t esz) |
|
{ |
|
return esz <= 32 && copyMaskTab[esz] ? copyMaskTab[esz] : copyMaskGeneric; |
|
} |
|
|
|
/* dst = src */ |
|
void Mat::copyTo( OutputArray _dst ) const |
|
{ |
|
int dtype = _dst.type(); |
|
if( _dst.fixedType() && dtype != type() ) |
|
{ |
|
convertTo( _dst, dtype ); |
|
return; |
|
} |
|
|
|
if( empty() ) |
|
{ |
|
_dst.release(); |
|
return; |
|
} |
|
|
|
if( dims <= 2 ) |
|
{ |
|
_dst.create( rows, cols, type() ); |
|
Mat dst = _dst.getMat(); |
|
if( data == dst.data ) |
|
return; |
|
|
|
if( rows > 0 && cols > 0 ) |
|
{ |
|
const uchar* sptr = data; |
|
uchar* dptr = dst.data; |
|
|
|
// to handle the copying 1xn matrix => nx1 std vector. |
|
Size sz = size() == dst.size() ? |
|
getContinuousSize(*this, dst) : |
|
getContinuousSize(*this); |
|
size_t len = sz.width*elemSize(); |
|
|
|
for( ; sz.height--; sptr += step, dptr += dst.step ) |
|
memcpy( dptr, sptr, len ); |
|
} |
|
return; |
|
} |
|
|
|
_dst.create( dims, size, type() ); |
|
Mat dst = _dst.getMat(); |
|
if( data == dst.data ) |
|
return; |
|
|
|
if( total() != 0 ) |
|
{ |
|
const Mat* arrays[] = { this, &dst }; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs, 2); |
|
size_t sz = it.size*elemSize(); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
memcpy(ptrs[1], ptrs[0], sz); |
|
} |
|
} |
|
|
|
void Mat::copyTo( OutputArray _dst, InputArray _mask ) const |
|
{ |
|
Mat mask = _mask.getMat(); |
|
if( !mask.data ) |
|
{ |
|
copyTo(_dst); |
|
return; |
|
} |
|
|
|
int cn = channels(), mcn = mask.channels(); |
|
CV_Assert( mask.depth() == CV_8U && (mcn == 1 || mcn == cn) ); |
|
bool colorMask = mcn > 1; |
|
|
|
size_t esz = colorMask ? elemSize1() : elemSize(); |
|
BinaryFunc copymask = getCopyMaskFunc(esz); |
|
|
|
uchar* data0 = _dst.getMat().data; |
|
_dst.create( dims, size, type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( dst.data != data0 ) // do not leave dst uninitialized |
|
dst = Scalar(0); |
|
|
|
if( dims <= 2 ) |
|
{ |
|
Size sz = getContinuousSize(*this, dst, mask, mcn); |
|
copymask(data, step, mask.data, mask.step, dst.data, dst.step, sz, &esz); |
|
return; |
|
} |
|
|
|
const Mat* arrays[] = { this, &dst, &mask, 0 }; |
|
uchar* ptrs[3]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Size sz((int)(it.size*mcn), 1); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
copymask(ptrs[0], 0, ptrs[2], 0, ptrs[1], 0, sz, &esz); |
|
} |
|
|
|
Mat& Mat::operator = (const Scalar& s) |
|
{ |
|
const Mat* arrays[] = { this }; |
|
uchar* dptr; |
|
NAryMatIterator it(arrays, &dptr, 1); |
|
size_t elsize = it.size*elemSize(); |
|
|
|
if( s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0 ) |
|
{ |
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
memset( dptr, 0, elsize ); |
|
} |
|
else |
|
{ |
|
if( it.nplanes > 0 ) |
|
{ |
|
double scalar[12]; |
|
scalarToRawData(s, scalar, type(), 12); |
|
size_t blockSize = 12*elemSize1(); |
|
|
|
for( size_t j = 0; j < elsize; j += blockSize ) |
|
{ |
|
size_t sz = MIN(blockSize, elsize - j); |
|
memcpy( dptr + j, scalar, sz ); |
|
} |
|
} |
|
|
|
for( size_t i = 1; i < it.nplanes; i++ ) |
|
{ |
|
++it; |
|
memcpy( dptr, data, elsize ); |
|
} |
|
} |
|
return *this; |
|
} |
|
|
|
|
|
Mat& Mat::setTo(InputArray _value, InputArray _mask) |
|
{ |
|
if( !data ) |
|
return *this; |
|
|
|
Mat value = _value.getMat(), mask = _mask.getMat(); |
|
|
|
CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::MAT )); |
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
size_t esz = elemSize(); |
|
BinaryFunc copymask = getCopyMaskFunc(esz); |
|
|
|
const Mat* arrays[] = { this, !mask.empty() ? &mask : 0, 0 }; |
|
uchar* ptrs[2]={0,0}; |
|
NAryMatIterator it(arrays, ptrs); |
|
int totalsz = (int)it.size, blockSize0 = std::min(totalsz, (int)((BLOCK_SIZE + esz-1)/esz)); |
|
AutoBuffer<uchar> _scbuf(blockSize0*esz + 32); |
|
uchar* scbuf = alignPtr((uchar*)_scbuf, (int)sizeof(double)); |
|
convertAndUnrollScalar( value, type(), scbuf, blockSize0 ); |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( int j = 0; j < totalsz; j += blockSize0 ) |
|
{ |
|
Size sz(std::min(blockSize0, totalsz - j), 1); |
|
size_t blockSize = sz.width*esz; |
|
if( ptrs[1] ) |
|
{ |
|
copymask(scbuf, 0, ptrs[1], 0, ptrs[0], 0, sz, &esz); |
|
ptrs[1] += sz.width; |
|
} |
|
else |
|
memcpy(ptrs[0], scbuf, blockSize); |
|
ptrs[0] += blockSize; |
|
} |
|
} |
|
return *this; |
|
} |
|
|
|
|
|
static void |
|
flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size, size_t esz ) |
|
{ |
|
int i, j, limit = (int)(((size.width + 1)/2)*esz); |
|
AutoBuffer<int> _tab(size.width*esz); |
|
int* tab = _tab; |
|
|
|
for( i = 0; i < size.width; i++ ) |
|
for( size_t k = 0; k < esz; k++ ) |
|
tab[i*esz + k] = (int)((size.width - i - 1)*esz + k); |
|
|
|
for( ; size.height--; src += sstep, dst += dstep ) |
|
{ |
|
for( i = 0; i < limit; i++ ) |
|
{ |
|
j = tab[i]; |
|
uchar t0 = src[i], t1 = src[j]; |
|
dst[i] = t1; dst[j] = t0; |
|
} |
|
} |
|
} |
|
|
|
static void |
|
flipVert( const uchar* src0, size_t sstep, uchar* dst0, size_t dstep, Size size, size_t esz ) |
|
{ |
|
const uchar* src1 = src0 + (size.height - 1)*sstep; |
|
uchar* dst1 = dst0 + (size.height - 1)*dstep; |
|
size.width *= (int)esz; |
|
|
|
for( int y = 0; y < (size.height + 1)/2; y++, src0 += sstep, src1 -= sstep, |
|
dst0 += dstep, dst1 -= dstep ) |
|
{ |
|
int i = 0; |
|
if( ((size_t)src0|(size_t)dst0|(size_t)src1|(size_t)dst1) % sizeof(int) == 0 ) |
|
{ |
|
for( ; i <= size.width - 16; i += 16 ) |
|
{ |
|
int t0 = ((int*)(src0 + i))[0]; |
|
int t1 = ((int*)(src1 + i))[0]; |
|
|
|
((int*)(dst0 + i))[0] = t1; |
|
((int*)(dst1 + i))[0] = t0; |
|
|
|
t0 = ((int*)(src0 + i))[1]; |
|
t1 = ((int*)(src1 + i))[1]; |
|
|
|
((int*)(dst0 + i))[1] = t1; |
|
((int*)(dst1 + i))[1] = t0; |
|
|
|
t0 = ((int*)(src0 + i))[2]; |
|
t1 = ((int*)(src1 + i))[2]; |
|
|
|
((int*)(dst0 + i))[2] = t1; |
|
((int*)(dst1 + i))[2] = t0; |
|
|
|
t0 = ((int*)(src0 + i))[3]; |
|
t1 = ((int*)(src1 + i))[3]; |
|
|
|
((int*)(dst0 + i))[3] = t1; |
|
((int*)(dst1 + i))[3] = t0; |
|
} |
|
|
|
for( ; i <= size.width - 4; i += 4 ) |
|
{ |
|
int t0 = ((int*)(src0 + i))[0]; |
|
int t1 = ((int*)(src1 + i))[0]; |
|
|
|
((int*)(dst0 + i))[0] = t1; |
|
((int*)(dst1 + i))[0] = t0; |
|
} |
|
} |
|
|
|
for( ; i < size.width; i++ ) |
|
{ |
|
uchar t0 = src0[i]; |
|
uchar t1 = src1[i]; |
|
|
|
dst0[i] = t1; |
|
dst1[i] = t0; |
|
} |
|
} |
|
} |
|
|
|
void flip( InputArray _src, OutputArray _dst, int flip_mode ) |
|
{ |
|
Mat src = _src.getMat(); |
|
|
|
CV_Assert( src.dims <= 2 ); |
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
size_t esz = src.elemSize(); |
|
|
|
if( flip_mode <= 0 ) |
|
flipVert( src.data, src.step, dst.data, dst.step, src.size(), esz ); |
|
else |
|
flipHoriz( src.data, src.step, dst.data, dst.step, src.size(), esz ); |
|
|
|
if( flip_mode < 0 ) |
|
flipHoriz( dst.data, dst.step, dst.data, dst.step, dst.size(), esz ); |
|
} |
|
|
|
|
|
void repeat(InputArray _src, int ny, int nx, OutputArray _dst) |
|
{ |
|
Mat src = _src.getMat(); |
|
CV_Assert( src.dims <= 2 ); |
|
|
|
_dst.create(src.rows*ny, src.cols*nx, src.type()); |
|
Mat dst = _dst.getMat(); |
|
Size ssize = src.size(), dsize = dst.size(); |
|
int esz = (int)src.elemSize(); |
|
int x, y; |
|
ssize.width *= esz; dsize.width *= esz; |
|
|
|
for( y = 0; y < ssize.height; y++ ) |
|
{ |
|
for( x = 0; x < dsize.width; x += ssize.width ) |
|
memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width ); |
|
} |
|
|
|
for( ; y < dsize.height; y++ ) |
|
memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width ); |
|
} |
|
|
|
Mat repeat(const Mat& src, int ny, int nx) |
|
{ |
|
if( nx == 1 && ny == 1 ) |
|
return src; |
|
Mat dst; |
|
repeat(src, ny, nx, dst); |
|
return dst; |
|
} |
|
|
|
} |
|
|
|
/* dst = src */ |
|
CV_IMPL void |
|
cvCopy( const void* srcarr, void* dstarr, const void* maskarr ) |
|
{ |
|
if( CV_IS_SPARSE_MAT(srcarr) && CV_IS_SPARSE_MAT(dstarr)) |
|
{ |
|
CV_Assert( maskarr == 0 ); |
|
CvSparseMat* src1 = (CvSparseMat*)srcarr; |
|
CvSparseMat* dst1 = (CvSparseMat*)dstarr; |
|
CvSparseMatIterator iterator; |
|
CvSparseNode* node; |
|
|
|
dst1->dims = src1->dims; |
|
memcpy( dst1->size, src1->size, src1->dims*sizeof(src1->size[0])); |
|
dst1->valoffset = src1->valoffset; |
|
dst1->idxoffset = src1->idxoffset; |
|
cvClearSet( dst1->heap ); |
|
|
|
if( src1->heap->active_count >= dst1->hashsize*CV_SPARSE_HASH_RATIO ) |
|
{ |
|
cvFree( &dst1->hashtable ); |
|
dst1->hashsize = src1->hashsize; |
|
dst1->hashtable = |
|
(void**)cvAlloc( dst1->hashsize*sizeof(dst1->hashtable[0])); |
|
} |
|
|
|
memset( dst1->hashtable, 0, dst1->hashsize*sizeof(dst1->hashtable[0])); |
|
|
|
for( node = cvInitSparseMatIterator( src1, &iterator ); |
|
node != 0; node = cvGetNextSparseNode( &iterator )) |
|
{ |
|
CvSparseNode* node_copy = (CvSparseNode*)cvSetNew( dst1->heap ); |
|
int tabidx = node->hashval & (dst1->hashsize - 1); |
|
memcpy( node_copy, node, dst1->heap->elem_size ); |
|
node_copy->next = (CvSparseNode*)dst1->hashtable[tabidx]; |
|
dst1->hashtable[tabidx] = node_copy; |
|
} |
|
return; |
|
} |
|
cv::Mat src = cv::cvarrToMat(srcarr, false, true, 1), dst = cv::cvarrToMat(dstarr, false, true, 1); |
|
CV_Assert( src.depth() == dst.depth() && src.size == dst.size ); |
|
|
|
int coi1 = 0, coi2 = 0; |
|
if( CV_IS_IMAGE(srcarr) ) |
|
coi1 = cvGetImageCOI((const IplImage*)srcarr); |
|
if( CV_IS_IMAGE(dstarr) ) |
|
coi2 = cvGetImageCOI((const IplImage*)dstarr); |
|
|
|
if( coi1 || coi2 ) |
|
{ |
|
CV_Assert( (coi1 != 0 || src.channels() == 1) && |
|
(coi2 != 0 || dst.channels() == 1) ); |
|
|
|
int pair[] = { std::max(coi1-1, 0), std::max(coi2-1, 0) }; |
|
cv::mixChannels( &src, 1, &dst, 1, pair, 1 ); |
|
return; |
|
} |
|
else |
|
CV_Assert( src.channels() == dst.channels() ); |
|
|
|
if( !maskarr ) |
|
src.copyTo(dst); |
|
else |
|
src.copyTo(dst, cv::cvarrToMat(maskarr)); |
|
} |
|
|
|
CV_IMPL void |
|
cvSet( void* arr, CvScalar value, const void* maskarr ) |
|
{ |
|
cv::Mat m = cv::cvarrToMat(arr); |
|
if( !maskarr ) |
|
m = value; |
|
else |
|
m.setTo(cv::Scalar(value), cv::cvarrToMat(maskarr)); |
|
} |
|
|
|
CV_IMPL void |
|
cvSetZero( CvArr* arr ) |
|
{ |
|
if( CV_IS_SPARSE_MAT(arr) ) |
|
{ |
|
CvSparseMat* mat1 = (CvSparseMat*)arr; |
|
cvClearSet( mat1->heap ); |
|
if( mat1->hashtable ) |
|
memset( mat1->hashtable, 0, mat1->hashsize*sizeof(mat1->hashtable[0])); |
|
return; |
|
} |
|
cv::Mat m = cv::cvarrToMat(arr); |
|
m = cv::Scalar(0); |
|
} |
|
|
|
CV_IMPL void |
|
cvFlip( const CvArr* srcarr, CvArr* dstarr, int flip_mode ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr); |
|
cv::Mat dst; |
|
|
|
if (!dstarr) |
|
dst = src; |
|
else |
|
dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.type() == dst.type() && src.size() == dst.size() ); |
|
cv::flip( src, dst, flip_mode ); |
|
} |
|
|
|
CV_IMPL void |
|
cvRepeat( const CvArr* srcarr, CvArr* dstarr ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
CV_Assert( src.type() == dst.type() && |
|
dst.rows % src.rows == 0 && dst.cols % src.cols == 0 ); |
|
cv::repeat(src, dst.rows/src.rows, dst.cols/src.cols, dst); |
|
} |
|
|
|
/* End of file. */ |