mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.2 KiB
78 lines
2.2 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Simple example of stereo image matching and point cloud generation. |
|
|
|
Resulting .ply file cam be easily viewed using MeshLab ( http://meshlab.sourceforge.net/ ) |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
ply_header = '''ply |
|
format ascii 1.0 |
|
element vertex %(vert_num)d |
|
property float x |
|
property float y |
|
property float z |
|
property uchar red |
|
property uchar green |
|
property uchar blue |
|
end_header |
|
''' |
|
|
|
def write_ply(fn, verts, colors): |
|
verts = verts.reshape(-1, 3) |
|
colors = colors.reshape(-1, 3) |
|
verts = np.hstack([verts, colors]) |
|
with open(fn, 'wb') as f: |
|
f.write((ply_header % dict(vert_num=len(verts))).encode('utf-8')) |
|
np.savetxt(f, verts, fmt='%f %f %f %d %d %d ') |
|
|
|
|
|
if __name__ == '__main__': |
|
print('loading images...') |
|
imgL = cv2.pyrDown( cv2.imread('../data/aloeL.jpg') ) # downscale images for faster processing |
|
imgR = cv2.pyrDown( cv2.imread('../data/aloeR.jpg') ) |
|
|
|
# disparity range is tuned for 'aloe' image pair |
|
window_size = 3 |
|
min_disp = 16 |
|
num_disp = 112-min_disp |
|
stereo = cv2.StereoSGBM_create(minDisparity = min_disp, |
|
numDisparities = num_disp, |
|
blockSize = 16, |
|
P1 = 8*3*window_size**2, |
|
P2 = 32*3*window_size**2, |
|
disp12MaxDiff = 1, |
|
uniquenessRatio = 10, |
|
speckleWindowSize = 100, |
|
speckleRange = 32 |
|
) |
|
|
|
print('computing disparity...') |
|
disp = stereo.compute(imgL, imgR).astype(np.float32) / 16.0 |
|
|
|
print('generating 3d point cloud...',) |
|
h, w = imgL.shape[:2] |
|
f = 0.8*w # guess for focal length |
|
Q = np.float32([[1, 0, 0, -0.5*w], |
|
[0,-1, 0, 0.5*h], # turn points 180 deg around x-axis, |
|
[0, 0, 0, -f], # so that y-axis looks up |
|
[0, 0, 1, 0]]) |
|
points = cv2.reprojectImageTo3D(disp, Q) |
|
colors = cv2.cvtColor(imgL, cv2.COLOR_BGR2RGB) |
|
mask = disp > disp.min() |
|
out_points = points[mask] |
|
out_colors = colors[mask] |
|
out_fn = 'out.ply' |
|
write_ply('out.ply', out_points, out_colors) |
|
print('%s saved' % 'out.ply') |
|
|
|
cv2.imshow('left', imgL) |
|
cv2.imshow('disparity', (disp-min_disp)/num_disp) |
|
cv2.waitKey() |
|
cv2.destroyAllWindows()
|
|
|