Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
8.4 KiB
194 lines
8.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined (HAVE_CUDA) || !defined (HAVE_OPENCV_CUDALEGACY) || defined (CUDA_DISABLER) |
|
|
|
Ptr<BroxOpticalFlow> cv::cuda::BroxOpticalFlow::create(double, double, double, int, int, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); } |
|
|
|
#else |
|
|
|
namespace { |
|
|
|
class BroxOpticalFlowImpl : public BroxOpticalFlow |
|
{ |
|
public: |
|
BroxOpticalFlowImpl(double alpha, double gamma, double scale_factor, |
|
int inner_iterations, int outer_iterations, int solver_iterations) : |
|
alpha_(alpha), gamma_(gamma), scale_factor_(scale_factor), |
|
inner_iterations_(inner_iterations), outer_iterations_(outer_iterations), |
|
solver_iterations_(solver_iterations) |
|
{ |
|
} |
|
|
|
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream); |
|
|
|
virtual double getFlowSmoothness() const { return alpha_; } |
|
virtual void setFlowSmoothness(double alpha) { alpha_ = static_cast<float>(alpha); } |
|
|
|
virtual double getGradientConstancyImportance() const { return gamma_; } |
|
virtual void setGradientConstancyImportance(double gamma) { gamma_ = static_cast<float>(gamma); } |
|
|
|
virtual double getPyramidScaleFactor() const { return scale_factor_; } |
|
virtual void setPyramidScaleFactor(double scale_factor) { scale_factor_ = static_cast<float>(scale_factor); } |
|
|
|
//! number of lagged non-linearity iterations (inner loop) |
|
virtual int getInnerIterations() const { return inner_iterations_; } |
|
virtual void setInnerIterations(int inner_iterations) { inner_iterations_ = inner_iterations; } |
|
|
|
//! number of warping iterations (number of pyramid levels) |
|
virtual int getOuterIterations() const { return outer_iterations_; } |
|
virtual void setOuterIterations(int outer_iterations) { outer_iterations_ = outer_iterations; } |
|
|
|
//! number of linear system solver iterations |
|
virtual int getSolverIterations() const { return solver_iterations_; } |
|
virtual void setSolverIterations(int solver_iterations) { solver_iterations_ = solver_iterations; } |
|
|
|
private: |
|
//! flow smoothness |
|
float alpha_; |
|
|
|
//! gradient constancy importance |
|
float gamma_; |
|
|
|
//! pyramid scale factor |
|
float scale_factor_; |
|
|
|
//! number of lagged non-linearity iterations (inner loop) |
|
int inner_iterations_; |
|
|
|
//! number of warping iterations (number of pyramid levels) |
|
int outer_iterations_; |
|
|
|
//! number of linear system solver iterations |
|
int solver_iterations_; |
|
}; |
|
|
|
static size_t getBufSize(const NCVBroxOpticalFlowDescriptor& desc, |
|
const NCVMatrix<Ncv32f>& frame0, const NCVMatrix<Ncv32f>& frame1, |
|
NCVMatrix<Ncv32f>& u, NCVMatrix<Ncv32f>& v, |
|
size_t textureAlignment) |
|
{ |
|
NCVMemStackAllocator gpuCounter(static_cast<Ncv32u>(textureAlignment)); |
|
|
|
ncvSafeCall( NCVBroxOpticalFlow(desc, gpuCounter, frame0, frame1, u, v, 0) ); |
|
|
|
return gpuCounter.maxSize(); |
|
} |
|
|
|
static void outputHandler(const String &msg) |
|
{ |
|
CV_Error(cv::Error::GpuApiCallError, msg.c_str()); |
|
} |
|
|
|
void BroxOpticalFlowImpl::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow, Stream& stream) |
|
{ |
|
const GpuMat frame0 = _I0.getGpuMat(); |
|
const GpuMat frame1 = _I1.getGpuMat(); |
|
|
|
CV_Assert( frame0.type() == CV_32FC1 ); |
|
CV_Assert( frame1.size() == frame0.size() && frame1.type() == frame0.type() ); |
|
|
|
ncvSetDebugOutputHandler(outputHandler); |
|
|
|
BufferPool pool(stream); |
|
GpuMat u = pool.getBuffer(frame0.size(), CV_32FC1); |
|
GpuMat v = pool.getBuffer(frame0.size(), CV_32FC1); |
|
|
|
NCVBroxOpticalFlowDescriptor desc; |
|
desc.alpha = alpha_; |
|
desc.gamma = gamma_; |
|
desc.scale_factor = scale_factor_; |
|
desc.number_of_inner_iterations = inner_iterations_; |
|
desc.number_of_outer_iterations = outer_iterations_; |
|
desc.number_of_solver_iterations = solver_iterations_; |
|
|
|
NCVMemSegment frame0MemSeg; |
|
frame0MemSeg.begin.memtype = NCVMemoryTypeDevice; |
|
frame0MemSeg.begin.ptr = const_cast<uchar*>(frame0.data); |
|
frame0MemSeg.size = frame0.step * frame0.rows; |
|
|
|
NCVMemSegment frame1MemSeg; |
|
frame1MemSeg.begin.memtype = NCVMemoryTypeDevice; |
|
frame1MemSeg.begin.ptr = const_cast<uchar*>(frame1.data); |
|
frame1MemSeg.size = frame1.step * frame1.rows; |
|
|
|
NCVMemSegment uMemSeg; |
|
uMemSeg.begin.memtype = NCVMemoryTypeDevice; |
|
uMemSeg.begin.ptr = u.ptr(); |
|
uMemSeg.size = u.step * u.rows; |
|
|
|
NCVMemSegment vMemSeg; |
|
vMemSeg.begin.memtype = NCVMemoryTypeDevice; |
|
vMemSeg.begin.ptr = v.ptr(); |
|
vMemSeg.size = v.step * v.rows; |
|
|
|
DeviceInfo devInfo; |
|
size_t textureAlignment = devInfo.textureAlignment(); |
|
|
|
NCVMatrixReuse<Ncv32f> frame0Mat(frame0MemSeg, static_cast<Ncv32u>(textureAlignment), frame0.cols, frame0.rows, static_cast<Ncv32u>(frame0.step)); |
|
NCVMatrixReuse<Ncv32f> frame1Mat(frame1MemSeg, static_cast<Ncv32u>(textureAlignment), frame1.cols, frame1.rows, static_cast<Ncv32u>(frame1.step)); |
|
NCVMatrixReuse<Ncv32f> uMat(uMemSeg, static_cast<Ncv32u>(textureAlignment), u.cols, u.rows, static_cast<Ncv32u>(u.step)); |
|
NCVMatrixReuse<Ncv32f> vMat(vMemSeg, static_cast<Ncv32u>(textureAlignment), v.cols, v.rows, static_cast<Ncv32u>(v.step)); |
|
|
|
size_t bufSize = getBufSize(desc, frame0Mat, frame1Mat, uMat, vMat, textureAlignment); |
|
GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1); |
|
|
|
NCVMemStackAllocator gpuAllocator(NCVMemoryTypeDevice, bufSize, static_cast<Ncv32u>(textureAlignment), buf.ptr()); |
|
|
|
ncvSafeCall( NCVBroxOpticalFlow(desc, gpuAllocator, frame0Mat, frame1Mat, uMat, vMat, StreamAccessor::getStream(stream)) ); |
|
|
|
GpuMat flows[] = {u, v}; |
|
cuda::merge(flows, 2, _flow, stream); |
|
} |
|
} |
|
|
|
Ptr<BroxOpticalFlow> cv::cuda::BroxOpticalFlow::create(double alpha, double gamma, double scale_factor, int inner_iterations, int outer_iterations, int solver_iterations) |
|
{ |
|
return makePtr<BroxOpticalFlowImpl>(alpha, gamma, scale_factor, inner_iterations, outer_iterations, solver_iterations); |
|
} |
|
|
|
#endif /* HAVE_CUDA */
|
|
|