mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
598 lines
19 KiB
598 lines
19 KiB
/* |
|
* jccolor.c |
|
* |
|
* Copyright (C) 1991-1996, Thomas G. Lane. |
|
* Modified 2011-2023 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains input colorspace conversion routines. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
/* Private subobject */ |
|
|
|
typedef struct { |
|
struct jpeg_color_converter pub; /* public fields */ |
|
|
|
/* Private state for RGB->YCC conversion */ |
|
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ |
|
} my_color_converter; |
|
|
|
typedef my_color_converter * my_cconvert_ptr; |
|
|
|
|
|
/**************** RGB -> YCbCr conversion: most common case **************/ |
|
|
|
/* |
|
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), |
|
* previously known as Recommendation CCIR 601-1, except that Cb and Cr |
|
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. |
|
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. |
|
* sYCC (standard luma-chroma-chroma color space with extended gamut) |
|
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. |
|
* bg-sRGB and bg-sYCC (big gamut standard color spaces) |
|
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. |
|
* Note that the derived conversion coefficients given in some of these |
|
* documents are imprecise. The general conversion equations are |
|
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B |
|
* Cb = (B - Y) / (1 - Kb) / K |
|
* Cr = (R - Y) / (1 - Kr) / K |
|
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 |
|
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, |
|
* the conversion equations to be implemented are therefore |
|
* Y = 0.299 * R + 0.587 * G + 0.114 * B |
|
* Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE |
|
* Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE |
|
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, |
|
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and |
|
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) |
|
* were not represented exactly. Now we sacrifice exact representation of |
|
* maximum red and maximum blue in order to get exact grayscales. |
|
* |
|
* To avoid floating-point arithmetic, we represent the fractional constants |
|
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide |
|
* the products by 2^16, with appropriate rounding, to get the correct answer. |
|
* |
|
* For even more speed, we avoid doing any multiplications in the inner loop |
|
* by precalculating the constants times R,G,B for all possible values. |
|
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); |
|
* for 9-bit to 12-bit samples it is still acceptable. It's not very |
|
* reasonable for 16-bit samples, but if you want lossless storage |
|
* you shouldn't be changing colorspace anyway. |
|
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included |
|
* in the tables to save adding them separately in the inner loop. |
|
*/ |
|
|
|
#define SCALEBITS 16 /* speediest right-shift on some machines */ |
|
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS) |
|
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) |
|
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) |
|
|
|
/* We allocate one big table and divide it up into eight parts, instead of |
|
* doing eight alloc_small requests. This lets us use a single table base |
|
* address, which can be held in a register in the inner loops on many |
|
* machines (more than can hold all eight addresses, anyway). |
|
*/ |
|
|
|
#define R_Y_OFF 0 /* offset to R => Y section */ |
|
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ |
|
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ |
|
#define R_CB_OFF (3*(MAXJSAMPLE+1)) |
|
#define G_CB_OFF (4*(MAXJSAMPLE+1)) |
|
#define B_CB_OFF (5*(MAXJSAMPLE+1)) |
|
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ |
|
#define G_CR_OFF (6*(MAXJSAMPLE+1)) |
|
#define B_CR_OFF (7*(MAXJSAMPLE+1)) |
|
#define TABLE_SIZE (8*(MAXJSAMPLE+1)) |
|
|
|
|
|
/* |
|
* Initialize for RGB->YCC colorspace conversion. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_ycc_start (j_compress_ptr cinfo) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
INT32 * rgb_ycc_tab; |
|
INT32 i; |
|
|
|
/* Allocate and fill in the conversion tables. */ |
|
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
TABLE_SIZE * SIZEOF(INT32)); |
|
|
|
for (i = 0; i <= MAXJSAMPLE; i++) { |
|
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i; |
|
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i; |
|
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF; |
|
rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i; |
|
rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i; |
|
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. |
|
* This ensures that the maximum output will round to MAXJSAMPLE |
|
* not MAXJSAMPLE+1, and thus that we don't have to range-limit. |
|
*/ |
|
rgb_ycc_tab[i+B_CB_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1; |
|
/* B=>Cb and R=>Cr tables are the same |
|
rgb_ycc_tab[i+R_CR_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1; |
|
*/ |
|
rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i; |
|
rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* |
|
* Note that we change from the application's interleaved-pixel format |
|
* to our internal noninterleaved, one-plane-per-component format. The |
|
* input buffer is therefore three times as wide as the output buffer. |
|
* |
|
* A starting row offset is provided only for the output buffer. The |
|
* caller can easily adjust the passed input_buf value to accommodate |
|
* any row offset required on that side. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_ycc_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register int r, g, b; |
|
register INT32 * ctab = cconvert->rgb_ycc_tab; |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr0, outptr1, outptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = *input_buf++; |
|
outptr0 = output_buf[0][output_row]; |
|
outptr1 = output_buf[1][output_row]; |
|
outptr2 = output_buf[2][output_row]; |
|
output_row++; |
|
for (col = 0; col < num_cols; col++) { |
|
r = GETJSAMPLE(inptr[RGB_RED]); |
|
g = GETJSAMPLE(inptr[RGB_GREEN]); |
|
b = GETJSAMPLE(inptr[RGB_BLUE]); |
|
inptr += RGB_PIXELSIZE; |
|
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations |
|
* must be too; we do not need an explicit range-limiting operation. |
|
* Hence the value being shifted is never negative, and we don't |
|
* need the general RIGHT_SHIFT macro. |
|
*/ |
|
/* Y */ |
|
outptr0[col] = (JSAMPLE) |
|
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
|
>> SCALEBITS); |
|
/* Cb */ |
|
outptr1[col] = (JSAMPLE) |
|
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) |
|
>> SCALEBITS); |
|
/* Cr */ |
|
outptr2[col] = (JSAMPLE) |
|
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) |
|
>> SCALEBITS); |
|
} |
|
} |
|
} |
|
|
|
|
|
/**************** Cases other than RGB -> YCbCr **************/ |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* This version handles RGB->grayscale conversion, |
|
* which is the same as the RGB->Y portion of RGB->YCbCr. |
|
* We assume rgb_ycc_start has been called (we only use the Y tables). |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_gray_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register INT32 y; |
|
register INT32 * ctab = cconvert->rgb_ycc_tab; |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = *input_buf++; |
|
outptr = output_buf[0][output_row++]; |
|
for (col = 0; col < num_cols; col++) { |
|
y = ctab[R_Y_OFF + GETJSAMPLE(inptr[RGB_RED])]; |
|
y += ctab[G_Y_OFF + GETJSAMPLE(inptr[RGB_GREEN])]; |
|
y += ctab[B_Y_OFF + GETJSAMPLE(inptr[RGB_BLUE])]; |
|
inptr += RGB_PIXELSIZE; |
|
outptr[col] = (JSAMPLE) (y >> SCALEBITS); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* This version handles Adobe-style CMYK->YCCK conversion, |
|
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the |
|
* same conversion as above, while passing K (black) unchanged. |
|
* We assume rgb_ycc_start has been called. |
|
*/ |
|
|
|
METHODDEF(void) |
|
cmyk_ycck_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; |
|
register int r, g, b; |
|
register INT32 * ctab = cconvert->rgb_ycc_tab; |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr0, outptr1, outptr2, outptr3; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = *input_buf++; |
|
outptr0 = output_buf[0][output_row]; |
|
outptr1 = output_buf[1][output_row]; |
|
outptr2 = output_buf[2][output_row]; |
|
outptr3 = output_buf[3][output_row]; |
|
output_row++; |
|
for (col = 0; col < num_cols; col++) { |
|
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); |
|
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); |
|
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); |
|
/* K passes through as-is */ |
|
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ |
|
inptr += 4; |
|
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations |
|
* must be too; we do not need an explicit range-limiting operation. |
|
* Hence the value being shifted is never negative, and we don't |
|
* need the general RIGHT_SHIFT macro. |
|
*/ |
|
/* Y */ |
|
outptr0[col] = (JSAMPLE) |
|
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) |
|
>> SCALEBITS); |
|
/* Cb */ |
|
outptr1[col] = (JSAMPLE) |
|
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) |
|
>> SCALEBITS); |
|
/* Cr */ |
|
outptr2[col] = (JSAMPLE) |
|
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) |
|
>> SCALEBITS); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* [R,G,B] to [R-G,G,B-G] conversion with modulo calculation |
|
* (forward reversible color transform). |
|
* This can be seen as an adaption of the general RGB->YCbCr |
|
* conversion equation with Kr = Kb = 0, while replacing the |
|
* normalization by modulo calculation. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_rgb1_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
register int r, g, b; |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr0, outptr1, outptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = *input_buf++; |
|
outptr0 = output_buf[0][output_row]; |
|
outptr1 = output_buf[1][output_row]; |
|
outptr2 = output_buf[2][output_row]; |
|
output_row++; |
|
for (col = 0; col < num_cols; col++) { |
|
r = GETJSAMPLE(inptr[RGB_RED]); |
|
g = GETJSAMPLE(inptr[RGB_GREEN]); |
|
b = GETJSAMPLE(inptr[RGB_BLUE]); |
|
inptr += RGB_PIXELSIZE; |
|
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD |
|
* (modulo) operator is equivalent to the bitmask operator AND. |
|
*/ |
|
outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE); |
|
outptr1[col] = (JSAMPLE) g; |
|
outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* This version handles grayscale output with no conversion. |
|
* The source can be either plain grayscale or YCC (since Y == gray). |
|
*/ |
|
|
|
METHODDEF(void) |
|
grayscale_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr; |
|
register JDIMENSION count; |
|
register int instride = cinfo->input_components; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = *input_buf++; |
|
outptr = output_buf[0][output_row++]; |
|
for (count = num_cols; count > 0; count--) { |
|
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */ |
|
inptr += instride; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* No colorspace conversion, but change from interleaved |
|
* to separate-planes representation. |
|
*/ |
|
|
|
METHODDEF(void) |
|
rgb_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr0, outptr1, outptr2; |
|
register JDIMENSION col; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
|
|
while (--num_rows >= 0) { |
|
inptr = *input_buf++; |
|
outptr0 = output_buf[0][output_row]; |
|
outptr1 = output_buf[1][output_row]; |
|
outptr2 = output_buf[2][output_row]; |
|
output_row++; |
|
for (col = 0; col < num_cols; col++) { |
|
/* We can dispense with GETJSAMPLE() here */ |
|
outptr0[col] = inptr[RGB_RED]; |
|
outptr1[col] = inptr[RGB_GREEN]; |
|
outptr2[col] = inptr[RGB_BLUE]; |
|
inptr += RGB_PIXELSIZE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Convert some rows of samples to the JPEG colorspace. |
|
* This version handles multi-component colorspaces without conversion. |
|
* We assume input_components == num_components. |
|
*/ |
|
|
|
METHODDEF(void) |
|
null_convert (j_compress_ptr cinfo, |
|
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, |
|
JDIMENSION output_row, int num_rows) |
|
{ |
|
register JSAMPROW inptr; |
|
register JSAMPROW outptr; |
|
register JDIMENSION count; |
|
register int num_comps = cinfo->num_components; |
|
JDIMENSION num_cols = cinfo->image_width; |
|
int ci; |
|
|
|
while (--num_rows >= 0) { |
|
/* It seems fastest to make a separate pass for each component. */ |
|
for (ci = 0; ci < num_comps; ci++) { |
|
inptr = input_buf[0] + ci; |
|
outptr = output_buf[ci][output_row]; |
|
for (count = num_cols; count > 0; count--) { |
|
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */ |
|
inptr += num_comps; |
|
} |
|
} |
|
input_buf++; |
|
output_row++; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Empty method for start_pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
null_method (j_compress_ptr cinfo) |
|
{ |
|
/* no work needed */ |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for input colorspace conversion. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_color_converter (j_compress_ptr cinfo) |
|
{ |
|
my_cconvert_ptr cconvert; |
|
|
|
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter)); |
|
cinfo->cconvert = &cconvert->pub; |
|
/* set start_pass to null method until we find out differently */ |
|
cconvert->pub.start_pass = null_method; |
|
|
|
/* Make sure input_components agrees with in_color_space */ |
|
switch (cinfo->in_color_space) { |
|
case JCS_GRAYSCALE: |
|
if (cinfo->input_components != 1) |
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
|
break; |
|
|
|
case JCS_RGB: |
|
case JCS_BG_RGB: |
|
#if RGB_PIXELSIZE != 3 |
|
if (cinfo->input_components != RGB_PIXELSIZE) |
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
|
break; |
|
#endif /* else share code with YCbCr */ |
|
|
|
case JCS_YCbCr: |
|
case JCS_BG_YCC: |
|
if (cinfo->input_components != 3) |
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
|
break; |
|
|
|
case JCS_CMYK: |
|
case JCS_YCCK: |
|
if (cinfo->input_components != 4) |
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
|
break; |
|
|
|
default: /* JCS_UNKNOWN can be anything */ |
|
if (cinfo->input_components < 1) |
|
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); |
|
} |
|
|
|
/* Support color transform only for RGB colorspaces */ |
|
if (cinfo->color_transform && |
|
cinfo->jpeg_color_space != JCS_RGB && |
|
cinfo->jpeg_color_space != JCS_BG_RGB) |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
|
|
/* Check num_components, set conversion method based on requested space */ |
|
switch (cinfo->jpeg_color_space) { |
|
case JCS_GRAYSCALE: |
|
if (cinfo->num_components != 1) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
switch (cinfo->in_color_space) { |
|
case JCS_GRAYSCALE: |
|
case JCS_YCbCr: |
|
case JCS_BG_YCC: |
|
cconvert->pub.color_convert = grayscale_convert; |
|
break; |
|
case JCS_RGB: |
|
cconvert->pub.start_pass = rgb_ycc_start; |
|
cconvert->pub.color_convert = rgb_gray_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_RGB: |
|
case JCS_BG_RGB: |
|
if (cinfo->num_components != 3) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
if (cinfo->in_color_space != cinfo->jpeg_color_space) |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
switch (cinfo->color_transform) { |
|
case JCT_NONE: |
|
cconvert->pub.color_convert = rgb_convert; |
|
break; |
|
case JCT_SUBTRACT_GREEN: |
|
cconvert->pub.color_convert = rgb_rgb1_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_YCbCr: |
|
if (cinfo->num_components != 3) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
switch (cinfo->in_color_space) { |
|
case JCS_RGB: |
|
cconvert->pub.start_pass = rgb_ycc_start; |
|
cconvert->pub.color_convert = rgb_ycc_convert; |
|
break; |
|
case JCS_YCbCr: |
|
cconvert->pub.color_convert = null_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_BG_YCC: |
|
if (cinfo->num_components != 3) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
switch (cinfo->in_color_space) { |
|
case JCS_RGB: |
|
/* For conversion from normal RGB input to BG_YCC representation, |
|
* the Cb/Cr values are first computed as usual, and then |
|
* quantized further after DCT processing by a factor of |
|
* 2 in reference to the nominal quantization factor. |
|
*/ |
|
/* need quantization scale by factor of 2 after DCT */ |
|
cinfo->comp_info[1].component_needed = TRUE; |
|
cinfo->comp_info[2].component_needed = TRUE; |
|
/* compute normal YCC first */ |
|
cconvert->pub.start_pass = rgb_ycc_start; |
|
cconvert->pub.color_convert = rgb_ycc_convert; |
|
break; |
|
case JCS_YCbCr: |
|
/* need quantization scale by factor of 2 after DCT */ |
|
cinfo->comp_info[1].component_needed = TRUE; |
|
cinfo->comp_info[2].component_needed = TRUE; |
|
/*FALLTHROUGH*/ |
|
case JCS_BG_YCC: |
|
/* Pass through for BG_YCC input */ |
|
cconvert->pub.color_convert = null_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
case JCS_CMYK: |
|
if (cinfo->num_components != 4) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
if (cinfo->in_color_space != JCS_CMYK) |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
cconvert->pub.color_convert = null_convert; |
|
break; |
|
|
|
case JCS_YCCK: |
|
if (cinfo->num_components != 4) |
|
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); |
|
switch (cinfo->in_color_space) { |
|
case JCS_CMYK: |
|
cconvert->pub.start_pass = rgb_ycc_start; |
|
cconvert->pub.color_convert = cmyk_ycck_convert; |
|
break; |
|
case JCS_YCCK: |
|
cconvert->pub.color_convert = null_convert; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
} |
|
break; |
|
|
|
default: /* allow null conversion of JCS_UNKNOWN */ |
|
if (cinfo->jpeg_color_space != cinfo->in_color_space || |
|
cinfo->num_components != cinfo->input_components) |
|
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); |
|
cconvert->pub.color_convert = null_convert; |
|
} |
|
}
|
|
|