mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
954 lines
24 KiB
954 lines
24 KiB
/* |
|
* The copyright in this software is being made available under the 2-clauses |
|
* BSD License, included below. This software may be subject to other third |
|
* party and contributor rights, including patent rights, and no such rights |
|
* are granted under this license. |
|
* |
|
* Copyright (c) 2016, Even Rouault |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
#include <assert.h> |
|
|
|
#ifdef MUTEX_win32 |
|
|
|
/* Some versions of x86_64-w64-mingw32-gc -m32 resolve InterlockedCompareExchange() */ |
|
/* as __sync_val_compare_and_swap_4 but fails to link it. As this protects against */ |
|
/* a rather unlikely race, skip it */ |
|
#if !(defined(__MINGW32__) && defined(__i386__)) |
|
#define HAVE_INTERLOCKED_COMPARE_EXCHANGE 1 |
|
#endif |
|
|
|
#include <windows.h> |
|
#include <process.h> |
|
|
|
#include "opj_includes.h" |
|
|
|
OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void) |
|
{ |
|
return OPJ_TRUE; |
|
} |
|
|
|
int OPJ_CALLCONV opj_get_num_cpus(void) |
|
{ |
|
SYSTEM_INFO info; |
|
DWORD dwNum; |
|
GetSystemInfo(&info); |
|
dwNum = info.dwNumberOfProcessors; |
|
if (dwNum < 1) { |
|
return 1; |
|
} |
|
return (int)dwNum; |
|
} |
|
|
|
struct opj_mutex_t { |
|
CRITICAL_SECTION cs; |
|
}; |
|
|
|
opj_mutex_t* opj_mutex_create(void) |
|
{ |
|
opj_mutex_t* mutex = (opj_mutex_t*) opj_malloc(sizeof(opj_mutex_t)); |
|
if (!mutex) { |
|
return NULL; |
|
} |
|
InitializeCriticalSectionAndSpinCount(&(mutex->cs), 4000); |
|
return mutex; |
|
} |
|
|
|
void opj_mutex_lock(opj_mutex_t* mutex) |
|
{ |
|
EnterCriticalSection(&(mutex->cs)); |
|
} |
|
|
|
void opj_mutex_unlock(opj_mutex_t* mutex) |
|
{ |
|
LeaveCriticalSection(&(mutex->cs)); |
|
} |
|
|
|
void opj_mutex_destroy(opj_mutex_t* mutex) |
|
{ |
|
if (!mutex) { |
|
return; |
|
} |
|
DeleteCriticalSection(&(mutex->cs)); |
|
opj_free(mutex); |
|
} |
|
|
|
struct opj_cond_waiter_list_t { |
|
HANDLE hEvent; |
|
struct opj_cond_waiter_list_t* next; |
|
}; |
|
typedef struct opj_cond_waiter_list_t opj_cond_waiter_list_t; |
|
|
|
struct opj_cond_t { |
|
opj_mutex_t *internal_mutex; |
|
opj_cond_waiter_list_t *waiter_list; |
|
}; |
|
|
|
static DWORD TLSKey = 0; |
|
static volatile LONG inTLSLockedSection = 0; |
|
static volatile int TLSKeyInit = OPJ_FALSE; |
|
|
|
opj_cond_t* opj_cond_create(void) |
|
{ |
|
opj_cond_t* cond = (opj_cond_t*) opj_malloc(sizeof(opj_cond_t)); |
|
if (!cond) { |
|
return NULL; |
|
} |
|
|
|
/* Make sure that the TLS key is allocated in a thread-safe way */ |
|
/* We cannot use a global mutex/critical section since its creation itself would not be */ |
|
/* thread-safe, so use InterlockedCompareExchange trick */ |
|
while (OPJ_TRUE) { |
|
|
|
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
|
if (InterlockedCompareExchange(&inTLSLockedSection, 1, 0) == 0) |
|
#endif |
|
{ |
|
if (!TLSKeyInit) { |
|
TLSKey = TlsAlloc(); |
|
TLSKeyInit = OPJ_TRUE; |
|
} |
|
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
|
InterlockedCompareExchange(&inTLSLockedSection, 0, 1); |
|
#endif |
|
break; |
|
} |
|
} |
|
|
|
if (TLSKey == TLS_OUT_OF_INDEXES) { |
|
opj_free(cond); |
|
return NULL; |
|
} |
|
cond->internal_mutex = opj_mutex_create(); |
|
if (cond->internal_mutex == NULL) { |
|
opj_free(cond); |
|
return NULL; |
|
} |
|
cond->waiter_list = NULL; |
|
return cond; |
|
} |
|
|
|
void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex) |
|
{ |
|
opj_cond_waiter_list_t* item; |
|
HANDLE hEvent = (HANDLE) TlsGetValue(TLSKey); |
|
if (hEvent == NULL) { |
|
hEvent = CreateEvent(NULL, /* security attributes */ |
|
0, /* manual reset = no */ |
|
0, /* initial state = unsignaled */ |
|
NULL /* no name */); |
|
assert(hEvent); |
|
|
|
TlsSetValue(TLSKey, hEvent); |
|
} |
|
|
|
/* Insert the waiter into the waiter list of the condition */ |
|
opj_mutex_lock(cond->internal_mutex); |
|
|
|
item = (opj_cond_waiter_list_t*)opj_malloc(sizeof(opj_cond_waiter_list_t)); |
|
assert(item != NULL); |
|
|
|
item->hEvent = hEvent; |
|
item->next = cond->waiter_list; |
|
|
|
cond->waiter_list = item; |
|
|
|
opj_mutex_unlock(cond->internal_mutex); |
|
|
|
/* Release the client mutex before waiting for the event being signaled */ |
|
opj_mutex_unlock(mutex); |
|
|
|
/* Ideally we would check that we do not get WAIT_FAILED but it is hard */ |
|
/* to report a failure. */ |
|
WaitForSingleObject(hEvent, INFINITE); |
|
|
|
/* Reacquire the client mutex */ |
|
opj_mutex_lock(mutex); |
|
} |
|
|
|
void opj_cond_signal(opj_cond_t* cond) |
|
{ |
|
opj_cond_waiter_list_t* psIter; |
|
|
|
/* Signal the first registered event, and remove it from the list */ |
|
opj_mutex_lock(cond->internal_mutex); |
|
|
|
psIter = cond->waiter_list; |
|
if (psIter != NULL) { |
|
SetEvent(psIter->hEvent); |
|
cond->waiter_list = psIter->next; |
|
opj_free(psIter); |
|
} |
|
|
|
opj_mutex_unlock(cond->internal_mutex); |
|
} |
|
|
|
void opj_cond_destroy(opj_cond_t* cond) |
|
{ |
|
if (!cond) { |
|
return; |
|
} |
|
opj_mutex_destroy(cond->internal_mutex); |
|
assert(cond->waiter_list == NULL); |
|
opj_free(cond); |
|
} |
|
|
|
struct opj_thread_t { |
|
opj_thread_fn thread_fn; |
|
void* user_data; |
|
HANDLE hThread; |
|
}; |
|
|
|
static unsigned int __stdcall opj_thread_callback_adapter(void *info) |
|
{ |
|
opj_thread_t* thread = (opj_thread_t*) info; |
|
HANDLE hEvent = NULL; |
|
|
|
thread->thread_fn(thread->user_data); |
|
|
|
/* Free the handle possible allocated by a cond */ |
|
while (OPJ_TRUE) { |
|
/* Make sure TLSKey is not being created just at that moment... */ |
|
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
|
if (InterlockedCompareExchange(&inTLSLockedSection, 1, 0) == 0) |
|
#endif |
|
{ |
|
if (TLSKeyInit) { |
|
hEvent = (HANDLE) TlsGetValue(TLSKey); |
|
} |
|
#if HAVE_INTERLOCKED_COMPARE_EXCHANGE |
|
InterlockedCompareExchange(&inTLSLockedSection, 0, 1); |
|
#endif |
|
break; |
|
} |
|
} |
|
if (hEvent) { |
|
CloseHandle(hEvent); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data) |
|
{ |
|
opj_thread_t* thread; |
|
|
|
assert(thread_fn); |
|
|
|
thread = (opj_thread_t*) opj_malloc(sizeof(opj_thread_t)); |
|
if (!thread) { |
|
return NULL; |
|
} |
|
thread->thread_fn = thread_fn; |
|
thread->user_data = user_data; |
|
|
|
thread->hThread = (HANDLE)_beginthreadex(NULL, 0, |
|
opj_thread_callback_adapter, thread, 0, NULL); |
|
|
|
if (thread->hThread == NULL) { |
|
opj_free(thread); |
|
return NULL; |
|
} |
|
return thread; |
|
} |
|
|
|
void opj_thread_join(opj_thread_t* thread) |
|
{ |
|
WaitForSingleObject(thread->hThread, INFINITE); |
|
CloseHandle(thread->hThread); |
|
|
|
opj_free(thread); |
|
} |
|
|
|
#elif MUTEX_pthread |
|
|
|
#include <pthread.h> |
|
#include <stdlib.h> |
|
#include <unistd.h> |
|
|
|
/* Moved after all system includes, and in particular pthread.h, so as to */ |
|
/* avoid poisoning issuing with malloc() use in pthread.h with ulibc (#1013) */ |
|
#include "opj_includes.h" |
|
|
|
OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void) |
|
{ |
|
return OPJ_TRUE; |
|
} |
|
|
|
int OPJ_CALLCONV opj_get_num_cpus(void) |
|
{ |
|
#ifdef _SC_NPROCESSORS_ONLN |
|
return (int)sysconf(_SC_NPROCESSORS_ONLN); |
|
#else |
|
return 1; |
|
#endif |
|
} |
|
|
|
struct opj_mutex_t { |
|
pthread_mutex_t mutex; |
|
}; |
|
|
|
opj_mutex_t* opj_mutex_create(void) |
|
{ |
|
opj_mutex_t* mutex = (opj_mutex_t*) opj_calloc(1U, sizeof(opj_mutex_t)); |
|
if (mutex != NULL) { |
|
if (pthread_mutex_init(&mutex->mutex, NULL) != 0) { |
|
opj_free(mutex); |
|
mutex = NULL; |
|
} |
|
} |
|
return mutex; |
|
} |
|
|
|
void opj_mutex_lock(opj_mutex_t* mutex) |
|
{ |
|
pthread_mutex_lock(&(mutex->mutex)); |
|
} |
|
|
|
void opj_mutex_unlock(opj_mutex_t* mutex) |
|
{ |
|
pthread_mutex_unlock(&(mutex->mutex)); |
|
} |
|
|
|
void opj_mutex_destroy(opj_mutex_t* mutex) |
|
{ |
|
if (!mutex) { |
|
return; |
|
} |
|
pthread_mutex_destroy(&(mutex->mutex)); |
|
opj_free(mutex); |
|
} |
|
|
|
struct opj_cond_t { |
|
pthread_cond_t cond; |
|
}; |
|
|
|
opj_cond_t* opj_cond_create(void) |
|
{ |
|
opj_cond_t* cond = (opj_cond_t*) opj_malloc(sizeof(opj_cond_t)); |
|
if (!cond) { |
|
return NULL; |
|
} |
|
if (pthread_cond_init(&(cond->cond), NULL) != 0) { |
|
opj_free(cond); |
|
return NULL; |
|
} |
|
return cond; |
|
} |
|
|
|
void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex) |
|
{ |
|
pthread_cond_wait(&(cond->cond), &(mutex->mutex)); |
|
} |
|
|
|
void opj_cond_signal(opj_cond_t* cond) |
|
{ |
|
int ret = pthread_cond_signal(&(cond->cond)); |
|
(void)ret; |
|
assert(ret == 0); |
|
} |
|
|
|
void opj_cond_destroy(opj_cond_t* cond) |
|
{ |
|
if (!cond) { |
|
return; |
|
} |
|
pthread_cond_destroy(&(cond->cond)); |
|
opj_free(cond); |
|
} |
|
|
|
|
|
struct opj_thread_t { |
|
opj_thread_fn thread_fn; |
|
void* user_data; |
|
pthread_t thread; |
|
}; |
|
|
|
static void* opj_thread_callback_adapter(void* info) |
|
{ |
|
opj_thread_t* thread = (opj_thread_t*) info; |
|
thread->thread_fn(thread->user_data); |
|
return NULL; |
|
} |
|
|
|
opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data) |
|
{ |
|
pthread_attr_t attr; |
|
opj_thread_t* thread; |
|
|
|
assert(thread_fn); |
|
|
|
thread = (opj_thread_t*) opj_malloc(sizeof(opj_thread_t)); |
|
if (!thread) { |
|
return NULL; |
|
} |
|
thread->thread_fn = thread_fn; |
|
thread->user_data = user_data; |
|
|
|
pthread_attr_init(&attr); |
|
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); |
|
if (pthread_create(&(thread->thread), &attr, |
|
opj_thread_callback_adapter, (void *) thread) != 0) { |
|
opj_free(thread); |
|
return NULL; |
|
} |
|
return thread; |
|
} |
|
|
|
void opj_thread_join(opj_thread_t* thread) |
|
{ |
|
void* status; |
|
pthread_join(thread->thread, &status); |
|
|
|
opj_free(thread); |
|
} |
|
|
|
#else |
|
/* Stub implementation */ |
|
|
|
#include "opj_includes.h" |
|
|
|
OPJ_BOOL OPJ_CALLCONV opj_has_thread_support(void) |
|
{ |
|
return OPJ_FALSE; |
|
} |
|
|
|
int OPJ_CALLCONV opj_get_num_cpus(void) |
|
{ |
|
return 1; |
|
} |
|
|
|
opj_mutex_t* opj_mutex_create(void) |
|
{ |
|
return NULL; |
|
} |
|
|
|
void opj_mutex_lock(opj_mutex_t* mutex) |
|
{ |
|
(void) mutex; |
|
} |
|
|
|
void opj_mutex_unlock(opj_mutex_t* mutex) |
|
{ |
|
(void) mutex; |
|
} |
|
|
|
void opj_mutex_destroy(opj_mutex_t* mutex) |
|
{ |
|
(void) mutex; |
|
} |
|
|
|
opj_cond_t* opj_cond_create(void) |
|
{ |
|
return NULL; |
|
} |
|
|
|
void opj_cond_wait(opj_cond_t* cond, opj_mutex_t* mutex) |
|
{ |
|
(void) cond; |
|
(void) mutex; |
|
} |
|
|
|
void opj_cond_signal(opj_cond_t* cond) |
|
{ |
|
(void) cond; |
|
} |
|
|
|
void opj_cond_destroy(opj_cond_t* cond) |
|
{ |
|
(void) cond; |
|
} |
|
|
|
opj_thread_t* opj_thread_create(opj_thread_fn thread_fn, void* user_data) |
|
{ |
|
(void) thread_fn; |
|
(void) user_data; |
|
return NULL; |
|
} |
|
|
|
void opj_thread_join(opj_thread_t* thread) |
|
{ |
|
(void) thread; |
|
} |
|
|
|
#endif |
|
|
|
typedef struct { |
|
int key; |
|
void* value; |
|
opj_tls_free_func opj_free_func; |
|
} opj_tls_key_val_t; |
|
|
|
struct opj_tls_t { |
|
opj_tls_key_val_t* key_val; |
|
int key_val_count; |
|
}; |
|
|
|
static opj_tls_t* opj_tls_new(void) |
|
{ |
|
return (opj_tls_t*) opj_calloc(1, sizeof(opj_tls_t)); |
|
} |
|
|
|
static void opj_tls_destroy(opj_tls_t* tls) |
|
{ |
|
int i; |
|
if (!tls) { |
|
return; |
|
} |
|
for (i = 0; i < tls->key_val_count; i++) { |
|
if (tls->key_val[i].opj_free_func) { |
|
tls->key_val[i].opj_free_func(tls->key_val[i].value); |
|
} |
|
} |
|
opj_free(tls->key_val); |
|
opj_free(tls); |
|
} |
|
|
|
void* opj_tls_get(opj_tls_t* tls, int key) |
|
{ |
|
int i; |
|
for (i = 0; i < tls->key_val_count; i++) { |
|
if (tls->key_val[i].key == key) { |
|
return tls->key_val[i].value; |
|
} |
|
} |
|
return NULL; |
|
} |
|
|
|
OPJ_BOOL opj_tls_set(opj_tls_t* tls, int key, void* value, |
|
opj_tls_free_func opj_free_func) |
|
{ |
|
opj_tls_key_val_t* new_key_val; |
|
int i; |
|
|
|
if (tls->key_val_count == INT_MAX) { |
|
return OPJ_FALSE; |
|
} |
|
for (i = 0; i < tls->key_val_count; i++) { |
|
if (tls->key_val[i].key == key) { |
|
if (tls->key_val[i].opj_free_func) { |
|
tls->key_val[i].opj_free_func(tls->key_val[i].value); |
|
} |
|
tls->key_val[i].value = value; |
|
tls->key_val[i].opj_free_func = opj_free_func; |
|
return OPJ_TRUE; |
|
} |
|
} |
|
new_key_val = (opj_tls_key_val_t*) opj_realloc(tls->key_val, |
|
((size_t)tls->key_val_count + 1U) * sizeof(opj_tls_key_val_t)); |
|
if (!new_key_val) { |
|
return OPJ_FALSE; |
|
} |
|
tls->key_val = new_key_val; |
|
new_key_val[tls->key_val_count].key = key; |
|
new_key_val[tls->key_val_count].value = value; |
|
new_key_val[tls->key_val_count].opj_free_func = opj_free_func; |
|
tls->key_val_count ++; |
|
return OPJ_TRUE; |
|
} |
|
|
|
|
|
typedef struct { |
|
opj_job_fn job_fn; |
|
void *user_data; |
|
} opj_worker_thread_job_t; |
|
|
|
typedef struct { |
|
opj_thread_pool_t *tp; |
|
opj_thread_t *thread; |
|
int marked_as_waiting; |
|
|
|
opj_mutex_t *mutex; |
|
opj_cond_t *cond; |
|
} opj_worker_thread_t; |
|
|
|
typedef enum { |
|
OPJWTS_OK, |
|
OPJWTS_STOP, |
|
OPJWTS_ERROR |
|
} opj_worker_thread_state; |
|
|
|
struct opj_job_list_t { |
|
opj_worker_thread_job_t* job; |
|
struct opj_job_list_t* next; |
|
}; |
|
typedef struct opj_job_list_t opj_job_list_t; |
|
|
|
struct opj_worker_thread_list_t { |
|
opj_worker_thread_t* worker_thread; |
|
struct opj_worker_thread_list_t* next; |
|
}; |
|
typedef struct opj_worker_thread_list_t opj_worker_thread_list_t; |
|
|
|
struct opj_thread_pool_t { |
|
opj_worker_thread_t* worker_threads; |
|
int worker_threads_count; |
|
opj_cond_t* cond; |
|
opj_mutex_t* mutex; |
|
volatile opj_worker_thread_state state; |
|
opj_job_list_t* job_queue; |
|
volatile int pending_jobs_count; |
|
opj_worker_thread_list_t* waiting_worker_thread_list; |
|
int waiting_worker_thread_count; |
|
opj_tls_t* tls; |
|
int signaling_threshold; |
|
}; |
|
|
|
static OPJ_BOOL opj_thread_pool_setup(opj_thread_pool_t* tp, int num_threads); |
|
static opj_worker_thread_job_t* opj_thread_pool_get_next_job( |
|
opj_thread_pool_t* tp, |
|
opj_worker_thread_t* worker_thread, |
|
OPJ_BOOL signal_job_finished); |
|
|
|
opj_thread_pool_t* opj_thread_pool_create(int num_threads) |
|
{ |
|
opj_thread_pool_t* tp; |
|
|
|
tp = (opj_thread_pool_t*) opj_calloc(1, sizeof(opj_thread_pool_t)); |
|
if (!tp) { |
|
return NULL; |
|
} |
|
tp->state = OPJWTS_OK; |
|
|
|
if (num_threads <= 0) { |
|
tp->tls = opj_tls_new(); |
|
if (!tp->tls) { |
|
opj_free(tp); |
|
tp = NULL; |
|
} |
|
return tp; |
|
} |
|
|
|
tp->mutex = opj_mutex_create(); |
|
if (!tp->mutex) { |
|
opj_free(tp); |
|
return NULL; |
|
} |
|
if (!opj_thread_pool_setup(tp, num_threads)) { |
|
opj_thread_pool_destroy(tp); |
|
return NULL; |
|
} |
|
return tp; |
|
} |
|
|
|
static void opj_worker_thread_function(void* user_data) |
|
{ |
|
opj_worker_thread_t* worker_thread; |
|
opj_thread_pool_t* tp; |
|
opj_tls_t* tls; |
|
OPJ_BOOL job_finished = OPJ_FALSE; |
|
|
|
worker_thread = (opj_worker_thread_t*) user_data; |
|
tp = worker_thread->tp; |
|
tls = opj_tls_new(); |
|
|
|
while (OPJ_TRUE) { |
|
opj_worker_thread_job_t* job = opj_thread_pool_get_next_job(tp, worker_thread, |
|
job_finished); |
|
if (job == NULL) { |
|
break; |
|
} |
|
|
|
if (job->job_fn) { |
|
job->job_fn(job->user_data, tls); |
|
} |
|
opj_free(job); |
|
job_finished = OPJ_TRUE; |
|
} |
|
|
|
opj_tls_destroy(tls); |
|
} |
|
|
|
static OPJ_BOOL opj_thread_pool_setup(opj_thread_pool_t* tp, int num_threads) |
|
{ |
|
int i; |
|
OPJ_BOOL bRet = OPJ_TRUE; |
|
|
|
assert(num_threads > 0); |
|
|
|
tp->cond = opj_cond_create(); |
|
if (tp->cond == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
|
|
tp->worker_threads = (opj_worker_thread_t*) opj_calloc((size_t)num_threads, |
|
sizeof(opj_worker_thread_t)); |
|
if (tp->worker_threads == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
tp->worker_threads_count = num_threads; |
|
|
|
for (i = 0; i < num_threads; i++) { |
|
tp->worker_threads[i].tp = tp; |
|
|
|
tp->worker_threads[i].mutex = opj_mutex_create(); |
|
if (tp->worker_threads[i].mutex == NULL) { |
|
tp->worker_threads_count = i; |
|
bRet = OPJ_FALSE; |
|
break; |
|
} |
|
|
|
tp->worker_threads[i].cond = opj_cond_create(); |
|
if (tp->worker_threads[i].cond == NULL) { |
|
opj_mutex_destroy(tp->worker_threads[i].mutex); |
|
tp->worker_threads_count = i; |
|
bRet = OPJ_FALSE; |
|
break; |
|
} |
|
|
|
tp->worker_threads[i].marked_as_waiting = OPJ_FALSE; |
|
|
|
tp->worker_threads[i].thread = opj_thread_create(opj_worker_thread_function, |
|
&(tp->worker_threads[i])); |
|
if (tp->worker_threads[i].thread == NULL) { |
|
opj_mutex_destroy(tp->worker_threads[i].mutex); |
|
opj_cond_destroy(tp->worker_threads[i].cond); |
|
tp->worker_threads_count = i; |
|
bRet = OPJ_FALSE; |
|
break; |
|
} |
|
} |
|
|
|
/* Wait all threads to be started */ |
|
/* printf("waiting for all threads to be started\n"); */ |
|
opj_mutex_lock(tp->mutex); |
|
while (tp->waiting_worker_thread_count < tp->worker_threads_count) { |
|
opj_cond_wait(tp->cond, tp->mutex); |
|
} |
|
opj_mutex_unlock(tp->mutex); |
|
/* printf("all threads started\n"); */ |
|
|
|
if (tp->state == OPJWTS_ERROR) { |
|
bRet = OPJ_FALSE; |
|
} |
|
|
|
return bRet; |
|
} |
|
|
|
/* |
|
void opj_waiting() |
|
{ |
|
printf("waiting!\n"); |
|
} |
|
*/ |
|
|
|
static opj_worker_thread_job_t* opj_thread_pool_get_next_job( |
|
opj_thread_pool_t* tp, |
|
opj_worker_thread_t* worker_thread, |
|
OPJ_BOOL signal_job_finished) |
|
{ |
|
while (OPJ_TRUE) { |
|
opj_job_list_t* top_job_iter; |
|
|
|
opj_mutex_lock(tp->mutex); |
|
|
|
if (signal_job_finished) { |
|
signal_job_finished = OPJ_FALSE; |
|
tp->pending_jobs_count --; |
|
/*printf("tp=%p, remaining jobs: %d\n", tp, tp->pending_jobs_count);*/ |
|
if (tp->pending_jobs_count <= tp->signaling_threshold) { |
|
opj_cond_signal(tp->cond); |
|
} |
|
} |
|
|
|
if (tp->state == OPJWTS_STOP) { |
|
opj_mutex_unlock(tp->mutex); |
|
return NULL; |
|
} |
|
top_job_iter = tp->job_queue; |
|
if (top_job_iter) { |
|
opj_worker_thread_job_t* job; |
|
tp->job_queue = top_job_iter->next; |
|
|
|
job = top_job_iter->job; |
|
opj_mutex_unlock(tp->mutex); |
|
opj_free(top_job_iter); |
|
return job; |
|
} |
|
|
|
/* opj_waiting(); */ |
|
if (!worker_thread->marked_as_waiting) { |
|
opj_worker_thread_list_t* item; |
|
|
|
worker_thread->marked_as_waiting = OPJ_TRUE; |
|
tp->waiting_worker_thread_count ++; |
|
assert(tp->waiting_worker_thread_count <= tp->worker_threads_count); |
|
|
|
item = (opj_worker_thread_list_t*) opj_malloc(sizeof(opj_worker_thread_list_t)); |
|
if (item == NULL) { |
|
tp->state = OPJWTS_ERROR; |
|
opj_cond_signal(tp->cond); |
|
|
|
opj_mutex_unlock(tp->mutex); |
|
return NULL; |
|
} |
|
|
|
item->worker_thread = worker_thread; |
|
item->next = tp->waiting_worker_thread_list; |
|
tp->waiting_worker_thread_list = item; |
|
} |
|
|
|
/* printf("signaling that worker thread is ready\n"); */ |
|
opj_cond_signal(tp->cond); |
|
|
|
opj_mutex_lock(worker_thread->mutex); |
|
opj_mutex_unlock(tp->mutex); |
|
|
|
/* printf("waiting for job\n"); */ |
|
opj_cond_wait(worker_thread->cond, worker_thread->mutex); |
|
|
|
opj_mutex_unlock(worker_thread->mutex); |
|
/* printf("got job\n"); */ |
|
} |
|
} |
|
|
|
OPJ_BOOL opj_thread_pool_submit_job(opj_thread_pool_t* tp, |
|
opj_job_fn job_fn, |
|
void* user_data) |
|
{ |
|
opj_worker_thread_job_t* job; |
|
opj_job_list_t* item; |
|
|
|
if (tp->mutex == NULL) { |
|
job_fn(user_data, tp->tls); |
|
return OPJ_TRUE; |
|
} |
|
|
|
job = (opj_worker_thread_job_t*)opj_malloc(sizeof(opj_worker_thread_job_t)); |
|
if (job == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
job->job_fn = job_fn; |
|
job->user_data = user_data; |
|
|
|
item = (opj_job_list_t*) opj_malloc(sizeof(opj_job_list_t)); |
|
if (item == NULL) { |
|
opj_free(job); |
|
return OPJ_FALSE; |
|
} |
|
item->job = job; |
|
|
|
opj_mutex_lock(tp->mutex); |
|
|
|
tp->signaling_threshold = 100 * tp->worker_threads_count; |
|
while (tp->pending_jobs_count > tp->signaling_threshold) { |
|
/* printf("%d jobs enqueued. Waiting\n", tp->pending_jobs_count); */ |
|
opj_cond_wait(tp->cond, tp->mutex); |
|
/* printf("...%d jobs enqueued.\n", tp->pending_jobs_count); */ |
|
} |
|
|
|
item->next = tp->job_queue; |
|
tp->job_queue = item; |
|
tp->pending_jobs_count ++; |
|
|
|
if (tp->waiting_worker_thread_list) { |
|
opj_worker_thread_t* worker_thread; |
|
opj_worker_thread_list_t* next; |
|
opj_worker_thread_list_t* to_opj_free; |
|
|
|
worker_thread = tp->waiting_worker_thread_list->worker_thread; |
|
|
|
assert(worker_thread->marked_as_waiting); |
|
worker_thread->marked_as_waiting = OPJ_FALSE; |
|
|
|
next = tp->waiting_worker_thread_list->next; |
|
to_opj_free = tp->waiting_worker_thread_list; |
|
tp->waiting_worker_thread_list = next; |
|
tp->waiting_worker_thread_count --; |
|
|
|
opj_mutex_lock(worker_thread->mutex); |
|
opj_mutex_unlock(tp->mutex); |
|
opj_cond_signal(worker_thread->cond); |
|
opj_mutex_unlock(worker_thread->mutex); |
|
|
|
opj_free(to_opj_free); |
|
} else { |
|
opj_mutex_unlock(tp->mutex); |
|
} |
|
|
|
return OPJ_TRUE; |
|
} |
|
|
|
void opj_thread_pool_wait_completion(opj_thread_pool_t* tp, |
|
int max_remaining_jobs) |
|
{ |
|
if (tp->mutex == NULL) { |
|
return; |
|
} |
|
|
|
if (max_remaining_jobs < 0) { |
|
max_remaining_jobs = 0; |
|
} |
|
opj_mutex_lock(tp->mutex); |
|
tp->signaling_threshold = max_remaining_jobs; |
|
while (tp->pending_jobs_count > max_remaining_jobs) { |
|
/*printf("tp=%p, jobs before wait = %d, max_remaining_jobs = %d\n", tp, tp->pending_jobs_count, max_remaining_jobs);*/ |
|
opj_cond_wait(tp->cond, tp->mutex); |
|
/*printf("tp=%p, jobs after wait = %d\n", tp, tp->pending_jobs_count);*/ |
|
} |
|
opj_mutex_unlock(tp->mutex); |
|
} |
|
|
|
int opj_thread_pool_get_thread_count(opj_thread_pool_t* tp) |
|
{ |
|
return tp->worker_threads_count; |
|
} |
|
|
|
void opj_thread_pool_destroy(opj_thread_pool_t* tp) |
|
{ |
|
if (!tp) { |
|
return; |
|
} |
|
if (tp->cond) { |
|
int i; |
|
opj_thread_pool_wait_completion(tp, 0); |
|
|
|
opj_mutex_lock(tp->mutex); |
|
tp->state = OPJWTS_STOP; |
|
opj_mutex_unlock(tp->mutex); |
|
|
|
for (i = 0; i < tp->worker_threads_count; i++) { |
|
opj_mutex_lock(tp->worker_threads[i].mutex); |
|
opj_cond_signal(tp->worker_threads[i].cond); |
|
opj_mutex_unlock(tp->worker_threads[i].mutex); |
|
opj_thread_join(tp->worker_threads[i].thread); |
|
opj_cond_destroy(tp->worker_threads[i].cond); |
|
opj_mutex_destroy(tp->worker_threads[i].mutex); |
|
} |
|
|
|
opj_free(tp->worker_threads); |
|
|
|
while (tp->waiting_worker_thread_list != NULL) { |
|
opj_worker_thread_list_t* next = tp->waiting_worker_thread_list->next; |
|
opj_free(tp->waiting_worker_thread_list); |
|
tp->waiting_worker_thread_list = next; |
|
} |
|
|
|
opj_cond_destroy(tp->cond); |
|
} |
|
opj_mutex_destroy(tp->mutex); |
|
opj_tls_destroy(tp->tls); |
|
opj_free(tp); |
|
}
|
|
|