Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

110 lines
3.9 KiB

#!/usr/bin/python
import urllib2
import sys
import time
from math import cos, sin
import cv2.cv as cv
CLOCKS_PER_SEC = 1.0
MHI_DURATION = 1
MAX_TIME_DELTA = 0.5
MIN_TIME_DELTA = 0.05
N = 4
buf = range(10)
last = 0
mhi = None # MHI
orient = None # orientation
mask = None # valid orientation mask
segmask = None # motion segmentation map
storage = None # temporary storage
def update_mhi(img, dst, diff_threshold):
global last
global mhi
global storage
global mask
global orient
global segmask
timestamp = time.clock() / CLOCKS_PER_SEC # get current time in seconds
size = cv.GetSize(img) # get current frame size
idx1 = last
if not mhi or cv.GetSize(mhi) != size:
for i in range(N):
buf[i] = cv.CreateImage(size, cv.IPL_DEPTH_8U, 1)
cv.Zero(buf[i])
mhi = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
cv.Zero(mhi) # clear MHI at the beginning
orient = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
segmask = cv.CreateImage(size,cv. IPL_DEPTH_32F, 1)
mask = cv.CreateImage(size,cv. IPL_DEPTH_8U, 1)
cv.CvtColor(img, buf[last], cv.CV_BGR2GRAY) # convert frame to grayscale
idx2 = (last + 1) % N # index of (last - (N-1))th frame
last = idx2
silh = buf[idx2]
cv.AbsDiff(buf[idx1], buf[idx2], silh) # get difference between frames
cv.Threshold(silh, silh, diff_threshold, 1, cv.CV_THRESH_BINARY) # and threshold it
cv.UpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION) # update MHI
cv.CvtScale(mhi, mask, 255./MHI_DURATION,
(MHI_DURATION - timestamp)*255./MHI_DURATION)
cv.Zero(dst)
cv.Merge(mask, None, None, None, dst)
cv.CalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3)
if not storage:
storage = cv.CreateMemStorage(0)
seq = cv.SegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA)
for (area, value, comp_rect) in seq:
if comp_rect[2] + comp_rect[3] > 100: # reject very small components
color = cv.CV_RGB(255, 0,0)
silh_roi = cv.GetSubRect(silh, comp_rect)
mhi_roi = cv.GetSubRect(mhi, comp_rect)
orient_roi = cv.GetSubRect(orient, comp_rect)
mask_roi = cv.GetSubRect(mask, comp_rect)
angle = 360 - cv.CalcGlobalOrientation(orient_roi, mask_roi, mhi_roi, timestamp, MHI_DURATION)
count = cv.Norm(silh_roi, None, cv.CV_L1, None) # calculate number of points within silhouette ROI
if count < (comp_rect[2] * comp_rect[3] * 0.05):
continue
magnitude = 30.
center = ((comp_rect[0] + comp_rect[2] / 2), (comp_rect[1] + comp_rect[3] / 2))
cv.Circle(dst, center, cv.Round(magnitude*1.2), color, 3, cv.CV_AA, 0)
cv.Line(dst,
center,
(cv.Round(center[0] + magnitude * cos(angle * cv.CV_PI / 180)),
cv.Round(center[1] - magnitude * sin(angle * cv.CV_PI / 180))),
color,
3,
cv.CV_AA,
0)
if __name__ == "__main__":
motion = 0
capture = 0
if len(sys.argv)==1:
capture = cv.CreateCameraCapture(0)
elif len(sys.argv)==2 and sys.argv[1].isdigit():
capture = cv.CreateCameraCapture(int(sys.argv[1]))
elif len(sys.argv)==2:
capture = cv.CreateFileCapture(sys.argv[1])
if not capture:
print "Could not initialize capturing..."
sys.exit(-1)
cv.NamedWindow("Motion", 1)
while True:
image = cv.QueryFrame(capture)
if(image):
if(not motion):
motion = cv.CreateImage((image.width, image.height), 8, 3)
cv.Zero(motion)
#motion.origin = image.origin
update_mhi(image, motion, 30)
cv.ShowImage("Motion", motion)
if(cv.WaitKey(10) != -1):
break
else:
break
cv.DestroyWindow("Motion")