mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
6.3 KiB
184 lines
6.3 KiB
#!/usr/bin/python |
|
|
|
import cv2.cv as cv |
|
import time |
|
from pydmtx import DataMatrix |
|
import numpy |
|
import sys |
|
import math |
|
|
|
''' |
|
Find 2 D barcode based on up to 3 channel datamatrix |
|
''' |
|
|
|
def absnorm8(im, im8): |
|
""" im may be any single-channel image type. Return an 8-bit version, absolute value, normalized so that max is 255 """ |
|
(minVal, maxVal, _, _) = cv.MinMaxLoc(im) |
|
cv.ConvertScaleAbs(im, im8, 255 / max(abs(minVal), abs(maxVal)), 0) |
|
return im8 |
|
|
|
font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1.0, 1.0, thickness = 2, lineType = cv.CV_AA) |
|
if 0: |
|
started = time.time() |
|
print dm_write.decode(bg.width, bg.height, buffer(bg.tostring()), max_count = 1, min_edge = 12, max_edge = 13, shape = DataMatrix.DmtxSymbol10x10) # , timeout = 10) |
|
print "took", time.time() - started |
|
|
|
class DmtxFinder: |
|
def __init__(self): |
|
self.cache = {} |
|
self.dm = DataMatrix() |
|
|
|
def Cached(self, name, rows, cols, type): |
|
key = (name, rows, cols) |
|
if not key in self.cache: |
|
self.cache[key] = cv.CreateMat(rows, cols, type) |
|
return self.cache[key] |
|
|
|
def find0(self, img): |
|
started = time.time() |
|
self.dm.decode(img.width, |
|
img.height, |
|
buffer(img.tostring()), |
|
max_count = 4, |
|
#min_edge = 6, |
|
#max_edge = 19 # Units of 2 pixels |
|
) |
|
print "brute", time.time() - started |
|
found = {} |
|
for i in range(self.dm.count()): |
|
stats = dm_read.stats(i + 1) |
|
print stats |
|
found[stats[0]] = stats[1] |
|
return found |
|
|
|
def find(self, img): |
|
started = time.time() |
|
gray = self.Cached('gray', img.height, img.width, cv.CV_8UC1) |
|
cv.CvtColor(img, gray, cv.CV_BGR2GRAY) |
|
|
|
sobel = self.Cached('sobel', img.height, img.width, cv.CV_16SC1) |
|
sobely = self.Cached('sobely', img.height, img.width, cv.CV_16SC1) |
|
|
|
cv.Sobel(gray, sobel, 1, 0) |
|
cv.Sobel(gray, sobely, 0, 1) |
|
cv.Add(sobel, sobely, sobel) |
|
|
|
sobel8 = self.Cached('sobel8', sobel.height, sobel.width, cv.CV_8UC1) |
|
absnorm8(sobel, sobel8) |
|
cv.Threshold(sobel8, sobel8, 128.0, 255.0, cv.CV_THRESH_BINARY) |
|
|
|
sobel_integral = self.Cached('sobel_integral', img.height + 1, img.width + 1, cv.CV_32SC1) |
|
cv.Integral(sobel8, sobel_integral) |
|
|
|
d = 16 |
|
_x1y1 = cv.GetSubRect(sobel_integral, (0, 0, sobel_integral.cols - d, sobel_integral.rows - d)) |
|
_x1y2 = cv.GetSubRect(sobel_integral, (0, d, sobel_integral.cols - d, sobel_integral.rows - d)) |
|
_x2y1 = cv.GetSubRect(sobel_integral, (d, 0, sobel_integral.cols - d, sobel_integral.rows - d)) |
|
_x2y2 = cv.GetSubRect(sobel_integral, (d, d, sobel_integral.cols - d, sobel_integral.rows - d)) |
|
|
|
summation = cv.CloneMat(_x2y2) |
|
cv.Sub(summation, _x1y2, summation) |
|
cv.Sub(summation, _x2y1, summation) |
|
cv.Add(summation, _x1y1, summation) |
|
sum8 = self.Cached('sum8', summation.height, summation.width, cv.CV_8UC1) |
|
absnorm8(summation, sum8) |
|
cv.Threshold(sum8, sum8, 32.0, 255.0, cv.CV_THRESH_BINARY) |
|
|
|
cv.ShowImage("sum8", sum8) |
|
seq = cv.FindContours(sum8, cv.CreateMemStorage(), cv.CV_RETR_EXTERNAL) |
|
subimg = cv.GetSubRect(img, (d / 2, d / 2, sum8.cols, sum8.rows)) |
|
t_cull = time.time() - started |
|
|
|
seqs = [] |
|
while seq: |
|
seqs.append(seq) |
|
seq = seq.h_next() |
|
|
|
started = time.time() |
|
found = {} |
|
print 'seqs', len(seqs) |
|
for seq in seqs: |
|
area = cv.ContourArea(seq) |
|
if area > 1000: |
|
rect = cv.BoundingRect(seq) |
|
edge = int((14 / 14.) * math.sqrt(area) / 2 + 0.5) |
|
candidate = cv.GetSubRect(subimg, rect) |
|
sym = self.dm.decode(candidate.width, |
|
candidate.height, |
|
buffer(candidate.tostring()), |
|
max_count = 1, |
|
#min_edge = 6, |
|
#max_edge = int(edge) # Units of 2 pixels |
|
) |
|
if sym: |
|
onscreen = [(d / 2 + rect[0] + x, d / 2 + rect[1] + y) for (x, y) in self.dm.stats(1)[1]] |
|
found[sym] = onscreen |
|
else: |
|
print "FAILED" |
|
t_brute = time.time() - started |
|
print "cull took", t_cull, "brute", t_brute |
|
return found |
|
|
|
bg = cv.CreateMat(1024, 1024, cv.CV_8UC3) |
|
cv.Set(bg, cv.RGB(0, 0, 0)) |
|
df = DmtxFinder() |
|
|
|
cv.NamedWindow("camera", 1) |
|
|
|
def mkdmtx(msg): |
|
dm_write = DataMatrix() |
|
dm_write.encode(msg) |
|
pi = dm_write.image # .resize((14, 14)) |
|
cv_im = cv.CreateImageHeader(pi.size, cv.IPL_DEPTH_8U, 3) |
|
cv.SetData(cv_im, pi.tostring()) |
|
return cv_im |
|
|
|
# test = [('WIL', (100,100))]: # , ('LOW', (250,100)), ('GAR', (300, 300)), ('AGE', (500, 300))]: |
|
|
|
test = [] |
|
y = 10 |
|
for j in range(7): |
|
r = 28 + j * 4 |
|
mr = r * math.sqrt(2) |
|
y += mr * 1.8 |
|
test += [(str(deg) + "abcdefgh"[j], (50 + deg * 11, y), math.pi * deg / 180, r) for deg in range(0, 90, 10)] |
|
|
|
for (msg, (x, y), angle, r) in test: |
|
map = cv.CreateMat(2, 3, cv.CV_32FC1) |
|
corners = [(x + r * math.cos(angle + th), y + r * math.sin(angle + th)) for th in [0, math.pi / 2, math.pi, 3 * math.pi / 4]] |
|
src = mkdmtx(msg) |
|
(sx, sy) = cv.GetSize(src) |
|
cv.GetAffineTransform([(0,0), (sx, 0), (sx, sy)], corners[:3], map) |
|
temp = cv.CreateMat(bg.rows, bg.cols, cv.CV_8UC3) |
|
cv.Set(temp, cv.RGB(0, 0, 0)) |
|
cv.WarpAffine(src, temp, map) |
|
cv.Or(temp, bg, bg) |
|
|
|
|
|
cv.ShowImage("comp", bg) |
|
scribble = cv.CloneMat(bg) |
|
|
|
if 0: |
|
for i in range(10): |
|
df.find(bg) |
|
|
|
for (sym, coords) in df.find(bg).items(): |
|
print sym |
|
cv.PolyLine(scribble, [coords], 1, cv.CV_RGB(255, 0,0), 1, lineType = cv.CV_AA) |
|
Xs = [x for (x, y) in coords] |
|
Ys = [y for (x, y) in coords] |
|
where = ((min(Xs) + max(Xs)) / 2, max(Ys) - 50) |
|
cv.PutText(scribble, sym, where, font, cv.RGB(0,255, 0)) |
|
|
|
cv.ShowImage("results", scribble) |
|
cv.WaitKey() |
|
cv.DestroyAllWindows() |
|
|
|
sys.exit(0) |
|
|
|
capture = cv.CaptureFromCAM(0) |
|
while True: |
|
img = cv.QueryFrame(capture) |
|
cv.ShowImage("capture", img) |
|
print df.find(img) |
|
cv.WaitKey(6)
|
|
|