mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
771 lines
30 KiB
771 lines
30 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* |
|
This is a regression test for stereo matching algorithms. This test gets some quality metrics |
|
discribed in "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms". |
|
Daniel Scharstein, Richard Szeliski |
|
*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include <limits> |
|
#include <cstdio> |
|
#include <map> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
const float EVAL_BAD_THRESH = 1.f; |
|
const int EVAL_TEXTURELESS_WIDTH = 3; |
|
const float EVAL_TEXTURELESS_THRESH = 4.f; |
|
const float EVAL_DISP_THRESH = 1.f; |
|
const float EVAL_DISP_GAP = 2.f; |
|
const int EVAL_DISCONT_WIDTH = 9; |
|
const int EVAL_IGNORE_BORDER = 10; |
|
|
|
const int ERROR_KINDS_COUNT = 6; |
|
|
|
//============================== quality measuring functions ================================================= |
|
|
|
/* |
|
Calculate textureless regions of image (regions where the squared horizontal intensity gradient averaged over |
|
a square window of size=evalTexturelessWidth is below a threshold=evalTexturelessThresh) and textured regions. |
|
*/ |
|
void computeTextureBasedMasks( const Mat& _img, Mat* texturelessMask, Mat* texturedMask, |
|
int texturelessWidth = EVAL_TEXTURELESS_WIDTH, float texturelessThresh = EVAL_TEXTURELESS_THRESH ) |
|
{ |
|
if( !texturelessMask && !texturedMask ) |
|
return; |
|
if( _img.empty() ) |
|
CV_Error( CV_StsBadArg, "img is empty" ); |
|
|
|
Mat img = _img; |
|
if( _img.channels() > 1) |
|
{ |
|
Mat tmp; cvtColor( _img, tmp, CV_BGR2GRAY ); img = tmp; |
|
} |
|
Mat dxI; Sobel( img, dxI, CV_32FC1, 1, 0, 3 ); |
|
Mat dxI2; pow( dxI / 8.f/*normalize*/, 2, dxI2 ); |
|
Mat avgDxI2; boxFilter( dxI2, avgDxI2, CV_32FC1, Size(texturelessWidth,texturelessWidth) ); |
|
|
|
if( texturelessMask ) |
|
*texturelessMask = avgDxI2 < texturelessThresh; |
|
if( texturedMask ) |
|
*texturedMask = avgDxI2 >= texturelessThresh; |
|
} |
|
|
|
void checkTypeAndSizeOfDisp( const Mat& dispMap, const Size* sz ) |
|
{ |
|
if( dispMap.empty() ) |
|
CV_Error( CV_StsBadArg, "dispMap is empty" ); |
|
if( dispMap.type() != CV_32FC1 ) |
|
CV_Error( CV_StsBadArg, "dispMap must have CV_32FC1 type" ); |
|
if( sz && (dispMap.rows != sz->height || dispMap.cols != sz->width) ) |
|
CV_Error( CV_StsBadArg, "dispMap has incorrect size" ); |
|
} |
|
|
|
void checkTypeAndSizeOfMask( const Mat& mask, Size sz ) |
|
{ |
|
if( mask.empty() ) |
|
CV_Error( CV_StsBadArg, "mask is empty" ); |
|
if( mask.type() != CV_8UC1 ) |
|
CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" ); |
|
if( mask.rows != sz.height || mask.cols != sz.width ) |
|
CV_Error( CV_StsBadArg, "mask has incorrect size" ); |
|
} |
|
|
|
void checkDispMapsAndUnknDispMasks( const Mat& leftDispMap, const Mat& rightDispMap, |
|
const Mat& leftUnknDispMask, const Mat& rightUnknDispMask ) |
|
{ |
|
// check type and size of disparity maps |
|
checkTypeAndSizeOfDisp( leftDispMap, 0 ); |
|
if( !rightDispMap.empty() ) |
|
{ |
|
Size sz = leftDispMap.size(); |
|
checkTypeAndSizeOfDisp( rightDispMap, &sz ); |
|
} |
|
|
|
// check size and type of unknown disparity maps |
|
if( !leftUnknDispMask.empty() ) |
|
checkTypeAndSizeOfMask( leftUnknDispMask, leftDispMap.size() ); |
|
if( !rightUnknDispMask.empty() ) |
|
checkTypeAndSizeOfMask( rightUnknDispMask, rightDispMap.size() ); |
|
|
|
// check values of disparity maps (known disparity values musy be positive) |
|
double leftMinVal = 0, rightMinVal = 0; |
|
if( leftUnknDispMask.empty() ) |
|
minMaxLoc( leftDispMap, &leftMinVal ); |
|
else |
|
minMaxLoc( leftDispMap, &leftMinVal, 0, 0, 0, ~leftUnknDispMask ); |
|
if( !rightDispMap.empty() ) |
|
{ |
|
if( rightUnknDispMask.empty() ) |
|
minMaxLoc( rightDispMap, &rightMinVal ); |
|
else |
|
minMaxLoc( rightDispMap, &rightMinVal, 0, 0, 0, ~rightUnknDispMask ); |
|
} |
|
if( leftMinVal < 0 || rightMinVal < 0) |
|
CV_Error( CV_StsBadArg, "known disparity values must be positive" ); |
|
} |
|
|
|
/* |
|
Calculate occluded regions of reference image (left image) (regions that are occluded in the matching image (right image), |
|
i.e., where the forward-mapped disparity lands at a location with a larger (nearer) disparity) and non occluded regions. |
|
*/ |
|
void computeOcclusionBasedMasks( const Mat& leftDisp, const Mat& _rightDisp, |
|
Mat* occludedMask, Mat* nonOccludedMask, |
|
const Mat& leftUnknDispMask = Mat(), const Mat& rightUnknDispMask = Mat(), |
|
float dispThresh = EVAL_DISP_THRESH ) |
|
{ |
|
if( !occludedMask && !nonOccludedMask ) |
|
return; |
|
checkDispMapsAndUnknDispMasks( leftDisp, _rightDisp, leftUnknDispMask, rightUnknDispMask ); |
|
|
|
Mat rightDisp; |
|
if( _rightDisp.empty() ) |
|
{ |
|
if( !rightUnknDispMask.empty() ) |
|
CV_Error( CV_StsBadArg, "rightUnknDispMask must be empty if _rightDisp is empty" ); |
|
rightDisp.create(leftDisp.size(), CV_32FC1); |
|
rightDisp.setTo(Scalar::all(0) ); |
|
for( int leftY = 0; leftY < leftDisp.rows; leftY++ ) |
|
{ |
|
for( int leftX = 0; leftX < leftDisp.cols; leftX++ ) |
|
{ |
|
if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) ) |
|
continue; |
|
float leftDispVal = leftDisp.at<float>(leftY, leftX); |
|
int rightX = leftX - cvRound(leftDispVal), rightY = leftY; |
|
if( rightX >= 0) |
|
rightDisp.at<float>(rightY,rightX) = max(rightDisp.at<float>(rightY,rightX), leftDispVal); |
|
} |
|
} |
|
} |
|
else |
|
_rightDisp.copyTo(rightDisp); |
|
|
|
if( occludedMask ) |
|
{ |
|
occludedMask->create(leftDisp.size(), CV_8UC1); |
|
occludedMask->setTo(Scalar::all(0) ); |
|
} |
|
if( nonOccludedMask ) |
|
{ |
|
nonOccludedMask->create(leftDisp.size(), CV_8UC1); |
|
nonOccludedMask->setTo(Scalar::all(0) ); |
|
} |
|
for( int leftY = 0; leftY < leftDisp.rows; leftY++ ) |
|
{ |
|
for( int leftX = 0; leftX < leftDisp.cols; leftX++ ) |
|
{ |
|
if( !leftUnknDispMask.empty() && leftUnknDispMask.at<uchar>(leftY,leftX) ) |
|
continue; |
|
float leftDispVal = leftDisp.at<float>(leftY, leftX); |
|
int rightX = leftX - cvRound(leftDispVal), rightY = leftY; |
|
if( rightX < 0 && occludedMask ) |
|
occludedMask->at<uchar>(leftY, leftX) = 255; |
|
else |
|
{ |
|
if( !rightUnknDispMask.empty() && rightUnknDispMask.at<uchar>(rightY,rightX) ) |
|
continue; |
|
float rightDispVal = rightDisp.at<float>(rightY, rightX); |
|
if( rightDispVal > leftDispVal + dispThresh ) |
|
{ |
|
if( occludedMask ) |
|
occludedMask->at<uchar>(leftY, leftX) = 255; |
|
} |
|
else |
|
{ |
|
if( nonOccludedMask ) |
|
nonOccludedMask->at<uchar>(leftY, leftX) = 255; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* |
|
Calculate depth discontinuty regions: pixels whose neiboring disparities differ by more than |
|
dispGap, dilated by window of width discontWidth. |
|
*/ |
|
void computeDepthDiscontMask( const Mat& disp, Mat& depthDiscontMask, const Mat& unknDispMask = Mat(), |
|
float dispGap = EVAL_DISP_GAP, int discontWidth = EVAL_DISCONT_WIDTH ) |
|
{ |
|
if( disp.empty() ) |
|
CV_Error( CV_StsBadArg, "disp is empty" ); |
|
if( disp.type() != CV_32FC1 ) |
|
CV_Error( CV_StsBadArg, "disp must have CV_32FC1 type" ); |
|
if( !unknDispMask.empty() ) |
|
checkTypeAndSizeOfMask( unknDispMask, disp.size() ); |
|
|
|
Mat curDisp; disp.copyTo( curDisp ); |
|
if( !unknDispMask.empty() ) |
|
curDisp.setTo( Scalar(numeric_limits<float>::min()), unknDispMask ); |
|
Mat maxNeighbDisp; dilate( curDisp, maxNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) ); |
|
if( !unknDispMask.empty() ) |
|
curDisp.setTo( Scalar(numeric_limits<float>::max()), unknDispMask ); |
|
Mat minNeighbDisp; erode( curDisp, minNeighbDisp, Mat(3, 3, CV_8UC1, Scalar(1)) ); |
|
depthDiscontMask = max( (Mat)(maxNeighbDisp-disp), (Mat)(disp-minNeighbDisp) ) > dispGap; |
|
if( !unknDispMask.empty() ) |
|
depthDiscontMask &= ~unknDispMask; |
|
dilate( depthDiscontMask, depthDiscontMask, Mat(discontWidth, discontWidth, CV_8UC1, Scalar(1)) ); |
|
} |
|
|
|
/* |
|
Get evaluation masks excluding a border. |
|
*/ |
|
Mat getBorderedMask( Size maskSize, int border = EVAL_IGNORE_BORDER ) |
|
{ |
|
CV_Assert( border >= 0 ); |
|
Mat mask(maskSize, CV_8UC1, Scalar(0)); |
|
int w = maskSize.width - 2*border, h = maskSize.height - 2*border; |
|
if( w < 0 || h < 0 ) |
|
mask.setTo(Scalar(0)); |
|
else |
|
mask( Rect(Point(border,border),Size(w,h)) ).setTo(Scalar(255)); |
|
return mask; |
|
} |
|
|
|
/* |
|
Calculate root-mean-squared error between the computed disparity map (computedDisp) and ground truth map (groundTruthDisp). |
|
*/ |
|
float dispRMS( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask ) |
|
{ |
|
checkTypeAndSizeOfDisp( groundTruthDisp, 0 ); |
|
Size sz = groundTruthDisp.size(); |
|
checkTypeAndSizeOfDisp( computedDisp, &sz ); |
|
|
|
int pointsCount = sz.height*sz.width; |
|
if( !mask.empty() ) |
|
{ |
|
checkTypeAndSizeOfMask( mask, sz ); |
|
pointsCount = countNonZero(mask); |
|
} |
|
return 1.f/sqrt((float)pointsCount) * (float)norm(computedDisp, groundTruthDisp, NORM_L2, mask); |
|
} |
|
|
|
/* |
|
Calculate fraction of bad matching pixels. |
|
*/ |
|
float badMatchPxlsFraction( const Mat& computedDisp, const Mat& groundTruthDisp, const Mat& mask, |
|
float _badThresh = EVAL_BAD_THRESH ) |
|
{ |
|
int badThresh = cvRound(_badThresh); |
|
checkTypeAndSizeOfDisp( groundTruthDisp, 0 ); |
|
Size sz = groundTruthDisp.size(); |
|
checkTypeAndSizeOfDisp( computedDisp, &sz ); |
|
|
|
Mat badPxlsMap; |
|
absdiff( computedDisp, groundTruthDisp, badPxlsMap ); |
|
badPxlsMap = badPxlsMap > badThresh; |
|
int pointsCount = sz.height*sz.width; |
|
if( !mask.empty() ) |
|
{ |
|
checkTypeAndSizeOfMask( mask, sz ); |
|
badPxlsMap = badPxlsMap & mask; |
|
pointsCount = countNonZero(mask); |
|
} |
|
return 1.f/pointsCount * countNonZero(badPxlsMap); |
|
} |
|
|
|
//===================== regression test for stereo matching algorithms ============================== |
|
|
|
const string ALGORITHMS_DIR = "stereomatching/algorithms/"; |
|
const string DATASETS_DIR = "stereomatching/datasets/"; |
|
const string DATASETS_FILE = "datasets.xml"; |
|
|
|
const string RUN_PARAMS_FILE = "_params.xml"; |
|
const string RESULT_FILE = "_res.xml"; |
|
|
|
const string LEFT_IMG_NAME = "im2.png"; |
|
const string RIGHT_IMG_NAME = "im6.png"; |
|
const string TRUE_LEFT_DISP_NAME = "disp2.png"; |
|
const string TRUE_RIGHT_DISP_NAME = "disp6.png"; |
|
|
|
string ERROR_PREFIXES[] = { "borderedAll", |
|
"borderedNoOccl", |
|
"borderedOccl", |
|
"borderedTextured", |
|
"borderedTextureless", |
|
"borderedDepthDiscont" }; // size of ERROR_KINDS_COUNT |
|
|
|
|
|
const string RMS_STR = "RMS"; |
|
const string BAD_PXLS_FRACTION_STR = "BadPxlsFraction"; |
|
|
|
class QualityEvalParams |
|
{ |
|
public: |
|
QualityEvalParams() { setDefaults(); } |
|
QualityEvalParams( int _ignoreBorder ) |
|
{ |
|
setDefaults(); |
|
ignoreBorder = _ignoreBorder; |
|
} |
|
void setDefaults() |
|
{ |
|
badThresh = EVAL_BAD_THRESH; |
|
texturelessWidth = EVAL_TEXTURELESS_WIDTH; |
|
texturelessThresh = EVAL_TEXTURELESS_THRESH; |
|
dispThresh = EVAL_DISP_THRESH; |
|
dispGap = EVAL_DISP_GAP; |
|
discontWidth = EVAL_DISCONT_WIDTH; |
|
ignoreBorder = EVAL_IGNORE_BORDER; |
|
} |
|
float badThresh; |
|
int texturelessWidth; |
|
float texturelessThresh; |
|
float dispThresh; |
|
float dispGap; |
|
int discontWidth; |
|
int ignoreBorder; |
|
}; |
|
|
|
class CV_StereoMatchingTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_StereoMatchingTest() |
|
{ rmsEps.resize( ERROR_KINDS_COUNT, 0.01f ); fracEps.resize( ERROR_KINDS_COUNT, 1.e-6f ); } |
|
protected: |
|
// assumed that left image is a reference image |
|
virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg, |
|
Mat& leftDisp, Mat& rightDisp, int caseIdx ) = 0; // return ignored border width |
|
|
|
int readDatasetsParams( FileStorage& fs ); |
|
virtual int readRunParams( FileStorage& fs ); |
|
void writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs = 0 ); |
|
void readErrors( FileNode& fn, const string& errName, vector<float>& errors ); |
|
int compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors, |
|
const vector<float>& eps, const string& errName ); |
|
int processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite, |
|
const Mat& leftImg, const Mat& rightImg, |
|
const Mat& trueLeftDisp, const Mat& trueRightDisp, |
|
const Mat& leftDisp, const Mat& rightDisp, |
|
const QualityEvalParams& qualityEvalParams ); |
|
void run( int ); |
|
|
|
vector<float> rmsEps; |
|
vector<float> fracEps; |
|
|
|
struct DatasetParams |
|
{ |
|
int dispScaleFactor; |
|
int dispUnknVal; |
|
}; |
|
map<string, DatasetParams> datasetsParams; |
|
|
|
vector<string> caseNames; |
|
vector<string> caseDatasets; |
|
}; |
|
|
|
void CV_StereoMatchingTest::run(int) |
|
{ |
|
string dataPath = ts->get_data_path(); |
|
string algorithmName = name; |
|
assert( !algorithmName.empty() ); |
|
if( dataPath.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "dataPath is empty" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK ); |
|
return; |
|
} |
|
|
|
FileStorage datasetsFS( dataPath + DATASETS_DIR + DATASETS_FILE, FileStorage::READ ); |
|
int code = readDatasetsParams( datasetsFS ); |
|
if( code != cvtest::TS::OK ) |
|
{ |
|
ts->set_failed_test_info( code ); |
|
return; |
|
} |
|
FileStorage runParamsFS( dataPath + ALGORITHMS_DIR + algorithmName + RUN_PARAMS_FILE, FileStorage::READ ); |
|
code = readRunParams( runParamsFS ); |
|
if( code != cvtest::TS::OK ) |
|
{ |
|
ts->set_failed_test_info( code ); |
|
return; |
|
} |
|
|
|
string fullResultFilename = dataPath + ALGORITHMS_DIR + algorithmName + RESULT_FILE; |
|
FileStorage resFS( fullResultFilename, FileStorage::READ ); |
|
bool isWrite = true; // write or compare results |
|
if( resFS.isOpened() ) |
|
isWrite = false; |
|
else |
|
{ |
|
resFS.open( fullResultFilename, FileStorage::WRITE ); |
|
if( !resFS.isOpened() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "file %s can not be read or written\n", fullResultFilename.c_str() ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ARG_CHECK ); |
|
return; |
|
} |
|
resFS << "stereo_matching" << "{"; |
|
} |
|
|
|
int progress = 0, caseCount = (int)caseNames.size(); |
|
for( int ci = 0; ci < caseCount; ci++) |
|
{ |
|
progress = update_progress( progress, ci, caseCount, 0 ); |
|
printf("progress: %d%%\n", progress); |
|
fflush(stdout); |
|
string datasetName = caseDatasets[ci]; |
|
string datasetFullDirName = dataPath + DATASETS_DIR + datasetName + "/"; |
|
Mat leftImg = imread(datasetFullDirName + LEFT_IMG_NAME); |
|
Mat rightImg = imread(datasetFullDirName + RIGHT_IMG_NAME); |
|
Mat trueLeftDisp = imread(datasetFullDirName + TRUE_LEFT_DISP_NAME, 0); |
|
Mat trueRightDisp = imread(datasetFullDirName + TRUE_RIGHT_DISP_NAME, 0); |
|
|
|
if( leftImg.empty() || rightImg.empty() || trueLeftDisp.empty() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "images or left ground-truth disparities of dataset %s can not be read", datasetName.c_str() ); |
|
code = cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
continue; |
|
} |
|
int dispScaleFactor = datasetsParams[datasetName].dispScaleFactor; |
|
Mat tmp; trueLeftDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor ); trueLeftDisp = tmp; tmp.release(); |
|
if( !trueRightDisp.empty() ) |
|
trueRightDisp.convertTo( tmp, CV_32FC1, 1.f/dispScaleFactor ); trueRightDisp = tmp; tmp.release(); |
|
|
|
Mat leftDisp, rightDisp; |
|
int ignBorder = max(runStereoMatchingAlgorithm(leftImg, rightImg, leftDisp, rightDisp, ci), EVAL_IGNORE_BORDER); |
|
leftDisp.convertTo( tmp, CV_32FC1 ); leftDisp = tmp; tmp.release(); |
|
rightDisp.convertTo( tmp, CV_32FC1 ); rightDisp = tmp; tmp.release(); |
|
|
|
int tempCode = processStereoMatchingResults( resFS, ci, isWrite, |
|
leftImg, rightImg, trueLeftDisp, trueRightDisp, leftDisp, rightDisp, QualityEvalParams(ignBorder)); |
|
code = tempCode==cvtest::TS::OK ? code : tempCode; |
|
} |
|
|
|
if( isWrite ) |
|
resFS << "}"; // "stereo_matching" |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
void calcErrors( const Mat& leftImg, const Mat& /*rightImg*/, |
|
const Mat& trueLeftDisp, const Mat& trueRightDisp, |
|
const Mat& trueLeftUnknDispMask, const Mat& trueRightUnknDispMask, |
|
const Mat& calcLeftDisp, const Mat& /*calcRightDisp*/, |
|
vector<float>& rms, vector<float>& badPxlsFractions, |
|
const QualityEvalParams& qualityEvalParams ) |
|
{ |
|
Mat texturelessMask, texturedMask; |
|
computeTextureBasedMasks( leftImg, &texturelessMask, &texturedMask, |
|
qualityEvalParams.texturelessWidth, qualityEvalParams.texturelessThresh ); |
|
Mat occludedMask, nonOccludedMask; |
|
computeOcclusionBasedMasks( trueLeftDisp, trueRightDisp, &occludedMask, &nonOccludedMask, |
|
trueLeftUnknDispMask, trueRightUnknDispMask, qualityEvalParams.dispThresh); |
|
Mat depthDiscontMask; |
|
computeDepthDiscontMask( trueLeftDisp, depthDiscontMask, trueLeftUnknDispMask, |
|
qualityEvalParams.dispGap, qualityEvalParams.discontWidth); |
|
|
|
Mat borderedKnownMask = getBorderedMask( leftImg.size(), qualityEvalParams.ignoreBorder ) & ~trueLeftUnknDispMask; |
|
|
|
nonOccludedMask &= borderedKnownMask; |
|
occludedMask &= borderedKnownMask; |
|
texturedMask &= nonOccludedMask; // & borderedKnownMask |
|
texturelessMask &= nonOccludedMask; // & borderedKnownMask |
|
depthDiscontMask &= nonOccludedMask; // & borderedKnownMask |
|
|
|
rms.resize(ERROR_KINDS_COUNT); |
|
rms[0] = dispRMS( calcLeftDisp, trueLeftDisp, borderedKnownMask ); |
|
rms[1] = dispRMS( calcLeftDisp, trueLeftDisp, nonOccludedMask ); |
|
rms[2] = dispRMS( calcLeftDisp, trueLeftDisp, occludedMask ); |
|
rms[3] = dispRMS( calcLeftDisp, trueLeftDisp, texturedMask ); |
|
rms[4] = dispRMS( calcLeftDisp, trueLeftDisp, texturelessMask ); |
|
rms[5] = dispRMS( calcLeftDisp, trueLeftDisp, depthDiscontMask ); |
|
|
|
badPxlsFractions.resize(ERROR_KINDS_COUNT); |
|
badPxlsFractions[0] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, borderedKnownMask, qualityEvalParams.badThresh ); |
|
badPxlsFractions[1] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, nonOccludedMask, qualityEvalParams.badThresh ); |
|
badPxlsFractions[2] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, occludedMask, qualityEvalParams.badThresh ); |
|
badPxlsFractions[3] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturedMask, qualityEvalParams.badThresh ); |
|
badPxlsFractions[4] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, texturelessMask, qualityEvalParams.badThresh ); |
|
badPxlsFractions[5] = badMatchPxlsFraction( calcLeftDisp, trueLeftDisp, depthDiscontMask, qualityEvalParams.badThresh ); |
|
} |
|
|
|
int CV_StereoMatchingTest::processStereoMatchingResults( FileStorage& fs, int caseIdx, bool isWrite, |
|
const Mat& leftImg, const Mat& rightImg, |
|
const Mat& trueLeftDisp, const Mat& trueRightDisp, |
|
const Mat& leftDisp, const Mat& rightDisp, |
|
const QualityEvalParams& qualityEvalParams ) |
|
{ |
|
// rightDisp is not used in current test virsion |
|
int code = cvtest::TS::OK; |
|
assert( fs.isOpened() ); |
|
assert( trueLeftDisp.type() == CV_32FC1 && trueRightDisp.type() == CV_32FC1 ); |
|
assert( leftDisp.type() == CV_32FC1 && rightDisp.type() == CV_32FC1 ); |
|
|
|
// get masks for unknown ground truth disparity values |
|
Mat leftUnknMask, rightUnknMask; |
|
DatasetParams params = datasetsParams[caseDatasets[caseIdx]]; |
|
absdiff( trueLeftDisp, Scalar(params.dispUnknVal), leftUnknMask ); |
|
leftUnknMask = leftUnknMask < numeric_limits<float>::epsilon(); |
|
assert(leftUnknMask.type() == CV_8UC1); |
|
if( !trueRightDisp.empty() ) |
|
{ |
|
absdiff( trueRightDisp, Scalar(params.dispUnknVal), rightUnknMask ); |
|
rightUnknMask = rightUnknMask < numeric_limits<float>::epsilon(); |
|
assert(leftUnknMask.type() == CV_8UC1); |
|
} |
|
|
|
// calculate errors |
|
vector<float> rmss, badPxlsFractions; |
|
calcErrors( leftImg, rightImg, trueLeftDisp, trueRightDisp, leftUnknMask, rightUnknMask, |
|
leftDisp, rightDisp, rmss, badPxlsFractions, qualityEvalParams ); |
|
|
|
if( isWrite ) |
|
{ |
|
fs << caseNames[caseIdx] << "{"; |
|
cvWriteComment( fs.fs, RMS_STR.c_str(), 0 ); |
|
writeErrors( RMS_STR, rmss, &fs ); |
|
cvWriteComment( fs.fs, BAD_PXLS_FRACTION_STR.c_str(), 0 ); |
|
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions, &fs ); |
|
fs << "}"; // datasetName |
|
} |
|
else // compare |
|
{ |
|
ts->printf( cvtest::TS::LOG, "\nquality of case named %s\n", caseNames[caseIdx].c_str() ); |
|
ts->printf( cvtest::TS::LOG, "%s\n", RMS_STR.c_str() ); |
|
writeErrors( RMS_STR, rmss ); |
|
ts->printf( cvtest::TS::LOG, "%s\n", BAD_PXLS_FRACTION_STR.c_str() ); |
|
writeErrors( BAD_PXLS_FRACTION_STR, badPxlsFractions ); |
|
|
|
FileNode fn = fs.getFirstTopLevelNode()[caseNames[caseIdx]]; |
|
vector<float> validRmss, validBadPxlsFractions; |
|
|
|
readErrors( fn, RMS_STR, validRmss ); |
|
readErrors( fn, BAD_PXLS_FRACTION_STR, validBadPxlsFractions ); |
|
int tempCode = compareErrors( rmss, validRmss, rmsEps, RMS_STR ); |
|
code = tempCode==cvtest::TS::OK ? code : tempCode; |
|
tempCode = compareErrors( badPxlsFractions, validBadPxlsFractions, fracEps, BAD_PXLS_FRACTION_STR ); |
|
code = tempCode==cvtest::TS::OK ? code : tempCode; |
|
} |
|
return code; |
|
} |
|
|
|
int CV_StereoMatchingTest::readDatasetsParams( FileStorage& fs ) |
|
{ |
|
if( !fs.isOpened() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "datasetsParams can not be read " ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
datasetsParams.clear(); |
|
FileNode fn = fs.getFirstTopLevelNode(); |
|
assert(fn.isSeq()); |
|
for( int i = 0; i < (int)fn.size(); i+=3 ) |
|
{ |
|
String _name = fn[i]; |
|
DatasetParams params; |
|
String sf = fn[i+1]; params.dispScaleFactor = atoi(sf.c_str()); |
|
String uv = fn[i+2]; params.dispUnknVal = atoi(uv.c_str()); |
|
datasetsParams[_name] = params; |
|
} |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int CV_StereoMatchingTest::readRunParams( FileStorage& fs ) |
|
{ |
|
if( !fs.isOpened() ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "runParams can not be read " ); |
|
return cvtest::TS::FAIL_INVALID_TEST_DATA; |
|
} |
|
caseNames.clear();; |
|
caseDatasets.clear(); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
void CV_StereoMatchingTest::writeErrors( const string& errName, const vector<float>& errors, FileStorage* fs ) |
|
{ |
|
assert( (int)errors.size() == ERROR_KINDS_COUNT ); |
|
vector<float>::const_iterator it = errors.begin(); |
|
if( fs ) |
|
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it ) |
|
*fs << ERROR_PREFIXES[i] + errName << *it; |
|
else |
|
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it ) |
|
ts->printf( cvtest::TS::LOG, "%s = %f\n", string(ERROR_PREFIXES[i]+errName).c_str(), *it ); |
|
} |
|
|
|
void CV_StereoMatchingTest::readErrors( FileNode& fn, const string& errName, vector<float>& errors ) |
|
{ |
|
errors.resize( ERROR_KINDS_COUNT ); |
|
vector<float>::iterator it = errors.begin(); |
|
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++it ) |
|
fn[ERROR_PREFIXES[i]+errName] >> *it; |
|
} |
|
|
|
int CV_StereoMatchingTest::compareErrors( const vector<float>& calcErrors, const vector<float>& validErrors, |
|
const vector<float>& eps, const string& errName ) |
|
{ |
|
assert( (int)calcErrors.size() == ERROR_KINDS_COUNT ); |
|
assert( (int)validErrors.size() == ERROR_KINDS_COUNT ); |
|
assert( (int)eps.size() == ERROR_KINDS_COUNT ); |
|
vector<float>::const_iterator calcIt = calcErrors.begin(), |
|
validIt = validErrors.begin(), |
|
epsIt = eps.begin(); |
|
bool ok = true; |
|
for( int i = 0; i < ERROR_KINDS_COUNT; i++, ++calcIt, ++validIt, ++epsIt ) |
|
if( *calcIt - *validIt > *epsIt ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of %s (valid=%f; calc=%f)\n", string(ERROR_PREFIXES[i]+errName).c_str(), *validIt, *calcIt ); |
|
ok = false; |
|
} |
|
return ok ? cvtest::TS::OK : cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
//----------------------------------- StereoBM test ----------------------------------------------------- |
|
|
|
class CV_StereoBMTest : public CV_StereoMatchingTest |
|
{ |
|
public: |
|
CV_StereoBMTest() |
|
{ |
|
name = "stereobm"; |
|
fill(rmsEps.begin(), rmsEps.end(), 0.4f); |
|
fill(fracEps.begin(), fracEps.end(), 0.022f); |
|
} |
|
|
|
protected: |
|
struct RunParams |
|
{ |
|
int ndisp; |
|
int winSize; |
|
}; |
|
vector<RunParams> caseRunParams; |
|
|
|
virtual int readRunParams( FileStorage& fs ) |
|
{ |
|
int code = CV_StereoMatchingTest::readRunParams( fs ); |
|
FileNode fn = fs.getFirstTopLevelNode(); |
|
assert(fn.isSeq()); |
|
for( int i = 0; i < (int)fn.size(); i+=4 ) |
|
{ |
|
String caseName = fn[i], datasetName = fn[i+1]; |
|
RunParams params; |
|
String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str()); |
|
String winSize = fn[i+3]; params.winSize = atoi(winSize.c_str()); |
|
caseNames.push_back( caseName ); |
|
caseDatasets.push_back( datasetName ); |
|
caseRunParams.push_back( params ); |
|
} |
|
return code; |
|
} |
|
|
|
virtual int runStereoMatchingAlgorithm( const Mat& _leftImg, const Mat& _rightImg, |
|
Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx ) |
|
{ |
|
RunParams params = caseRunParams[caseIdx]; |
|
assert( params.ndisp%16 == 0 ); |
|
assert( _leftImg.type() == CV_8UC3 && _rightImg.type() == CV_8UC3 ); |
|
Mat leftImg; cvtColor( _leftImg, leftImg, CV_BGR2GRAY ); |
|
Mat rightImg; cvtColor( _rightImg, rightImg, CV_BGR2GRAY ); |
|
|
|
Ptr<StereoBM> bm = createStereoBM( params.ndisp, params.winSize ); |
|
Mat tempDisp; |
|
bm->compute( leftImg, rightImg, tempDisp ); |
|
tempDisp.convertTo(leftDisp, CV_32F, 1./StereoMatcher::DISP_SCALE); |
|
return params.winSize/2; |
|
} |
|
}; |
|
|
|
//----------------------------------- StereoSGBM test ----------------------------------------------------- |
|
|
|
class CV_StereoSGBMTest : public CV_StereoMatchingTest |
|
{ |
|
public: |
|
CV_StereoSGBMTest() |
|
{ |
|
name = "stereosgbm"; |
|
fill(rmsEps.begin(), rmsEps.end(), 0.25f); |
|
fill(fracEps.begin(), fracEps.end(), 0.01f); |
|
} |
|
|
|
protected: |
|
struct RunParams |
|
{ |
|
int ndisp; |
|
int winSize; |
|
bool fullDP; |
|
}; |
|
vector<RunParams> caseRunParams; |
|
|
|
virtual int readRunParams( FileStorage& fs ) |
|
{ |
|
int code = CV_StereoMatchingTest::readRunParams(fs); |
|
FileNode fn = fs.getFirstTopLevelNode(); |
|
assert(fn.isSeq()); |
|
for( int i = 0; i < (int)fn.size(); i+=5 ) |
|
{ |
|
String caseName = fn[i], datasetName = fn[i+1]; |
|
RunParams params; |
|
String ndisp = fn[i+2]; params.ndisp = atoi(ndisp.c_str()); |
|
String winSize = fn[i+3]; params.winSize = atoi(winSize.c_str()); |
|
String fullDP = fn[i+4]; params.fullDP = atoi(fullDP.c_str()) == 0 ? false : true; |
|
caseNames.push_back( caseName ); |
|
caseDatasets.push_back( datasetName ); |
|
caseRunParams.push_back( params ); |
|
} |
|
return code; |
|
} |
|
|
|
virtual int runStereoMatchingAlgorithm( const Mat& leftImg, const Mat& rightImg, |
|
Mat& leftDisp, Mat& /*rightDisp*/, int caseIdx ) |
|
{ |
|
RunParams params = caseRunParams[caseIdx]; |
|
assert( params.ndisp%16 == 0 ); |
|
Ptr<StereoSGBM> sgbm = createStereoSGBM( 0, params.ndisp, params.winSize, |
|
10*params.winSize*params.winSize, |
|
40*params.winSize*params.winSize, |
|
1, 63, 10, 100, 32, params.fullDP ? |
|
StereoSGBM::MODE_HH : StereoSGBM::MODE_SGBM ); |
|
sgbm->compute( leftImg, rightImg, leftDisp ); |
|
CV_Assert( leftDisp.type() == CV_16SC1 ); |
|
leftDisp/=16; |
|
return 0; |
|
} |
|
}; |
|
|
|
|
|
TEST(Calib3d_StereoBM, regression) { CV_StereoBMTest test; test.safe_run(); } |
|
TEST(Calib3d_StereoSGBM, regression) { CV_StereoSGBMTest test; test.safe_run(); }
|
|
|