Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
17 KiB
318 lines
17 KiB
|
|
/*#****************************************************************************** |
|
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
** |
|
** By downloading, copying, installing or using the software you agree to this license. |
|
** If you do not agree to this license, do not download, install, |
|
** copy or use the software. |
|
** |
|
** |
|
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. |
|
** |
|
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) |
|
** |
|
** Creation - enhancement process 2007-2013 |
|
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France |
|
** |
|
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). |
|
** Refer to the following research paper for more information: |
|
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 |
|
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: |
|
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. |
|
** |
|
** |
|
** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: |
|
** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 |
|
** |
|
** |
|
** License Agreement |
|
** For Open Source Computer Vision Library |
|
** |
|
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. |
|
** |
|
** For Human Visual System tools (bioinspired) |
|
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. |
|
** |
|
** Third party copyrights are property of their respective owners. |
|
** |
|
** Redistribution and use in source and binary forms, with or without modification, |
|
** are permitted provided that the following conditions are met: |
|
** |
|
** * Redistributions of source code must retain the above copyright notice, |
|
** this list of conditions and the following disclaimer. |
|
** |
|
** * Redistributions in binary form must reproduce the above copyright notice, |
|
** this list of conditions and the following disclaimer in the documentation |
|
** and/or other materials provided with the distribution. |
|
** |
|
** * The name of the copyright holders may not be used to endorse or promote products |
|
** derived from this software without specific prior written permission. |
|
** |
|
** This software is provided by the copyright holders and contributors "as is" and |
|
** any express or implied warranties, including, but not limited to, the implied |
|
** warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
** In no event shall the Intel Corporation or contributors be liable for any direct, |
|
** indirect, incidental, special, exemplary, or consequential damages |
|
** (including, but not limited to, procurement of substitute goods or services; |
|
** loss of use, data, or profits; or business interruption) however caused |
|
** and on any theory of liability, whether in contract, strict liability, |
|
** or tort (including negligence or otherwise) arising in any way out of |
|
** the use of this software, even if advised of the possibility of such damage. |
|
*******************************************************************************/ |
|
|
|
/* |
|
* retinafasttonemapping.cpp |
|
* |
|
* Created on: May 26, 2013 |
|
* Author: Alexandre Benoit |
|
*/ |
|
|
|
#include "precomp.hpp" |
|
#include "basicretinafilter.hpp" |
|
#include "retinacolor.hpp" |
|
#include <cstdio> |
|
#include <sstream> |
|
#include <valarray> |
|
|
|
namespace cv |
|
{ |
|
namespace bioinspired |
|
{ |
|
/** |
|
* @class RetinaFastToneMappingImpl a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV. |
|
* This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc. |
|
* As a summary, these are the model properties: |
|
* => 2 stages of local luminance adaptation with a different local neighborhood for each. |
|
* => first stage models the retina photorecetors local luminance adaptation |
|
* => second stage models th ganglion cells local information adaptation |
|
* => compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters. |
|
* ====> this can help noise robustness and temporal stability for video sequence use cases. |
|
* for more information, read to the following papers : |
|
* Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 |
|
* regarding spatio-temporal filter and the bigger retina model : |
|
* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. |
|
*/ |
|
|
|
class RetinaFastToneMappingImpl : public RetinaFastToneMapping |
|
{ |
|
public: |
|
/** |
|
* constructor |
|
* @param imageInput: the size of the images to process |
|
*/ |
|
RetinaFastToneMappingImpl(Size imageInput) |
|
{ |
|
unsigned int nbPixels=imageInput.height*imageInput.width; |
|
|
|
// basic error check |
|
if (nbPixels <= 0) |
|
throw cv::Exception(-1, "Bad retina size setup : size height and with must be superior to zero", "RetinaImpl::setup", "retinafasttonemapping.cpp", 0); |
|
|
|
// resize buffers |
|
_inputBuffer.resize(nbPixels*3); // buffer supports gray images but also 3 channels color buffers... (larger is better...) |
|
_imageOutput.resize(nbPixels*3); |
|
_temp2.resize(nbPixels); |
|
// allocate the main filter with 2 setup sets properties (one for each low pass filter |
|
_multiuseFilter = makePtr<BasicRetinaFilter>(imageInput.height, imageInput.width, 2); |
|
// allocate the color manager (multiplexer/demultiplexer |
|
_colorEngine = makePtr<RetinaColor>(imageInput.height, imageInput.width); |
|
// setup filter behaviors with default values |
|
setup(); |
|
} |
|
|
|
/** |
|
* basic destructor |
|
*/ |
|
virtual ~RetinaFastToneMappingImpl() { } |
|
|
|
/** |
|
* method that applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal smoothing and eventually high frequencies attenuation. This is a lighter method than the one available using the regular retina::run method. It is then faster but it does not include complete temporal filtering nor retina spectral whitening. Then, it can have a more limited effect on images with a very high dynamic range. This is an adptation of the original still image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: |
|
* -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 |
|
@param inputImage the input image to process RGB or gray levels |
|
@param outputToneMappedImage the output tone mapped image |
|
*/ |
|
virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage) |
|
{ |
|
// first convert input image to the compatible format : |
|
const bool colorMode = _convertCvMat2ValarrayBuffer(inputImage.getMat(), _inputBuffer); |
|
|
|
// process tone mapping |
|
if (colorMode) |
|
{ |
|
_runRGBToneMapping(_inputBuffer, _imageOutput, true); |
|
_convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), true, outputToneMappedImage); |
|
} |
|
else |
|
{ |
|
_runGrayToneMapping(_inputBuffer, _imageOutput); |
|
_convertValarrayBuffer2cvMat(_imageOutput, _multiuseFilter->getNBrows(), _multiuseFilter->getNBcolumns(), false, outputToneMappedImage); |
|
} |
|
|
|
} |
|
|
|
/** |
|
* setup method that updates tone mapping behaviors by adjusing the local luminance computation area |
|
* @param photoreceptorsNeighborhoodRadius the first stage local adaptation area |
|
* @param ganglioncellsNeighborhoodRadius the second stage local adaptation area |
|
* @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information (default is 1, see reference paper) |
|
*/ |
|
virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f) |
|
{ |
|
// setup the spatio-temporal properties of each filter |
|
_meanLuminanceModulatorK = meanLuminanceModulatorK; |
|
_multiuseFilter->setV0CompressionParameter(1.f, 255.f, 128.f); |
|
_multiuseFilter->setLPfilterParameters(0.f, 0.f, photoreceptorsNeighborhoodRadius, 1); |
|
_multiuseFilter->setLPfilterParameters(0.f, 0.f, ganglioncellsNeighborhoodRadius, 2); |
|
} |
|
|
|
private: |
|
// a filter able to perform local adaptation and low pass spatio-temporal filtering |
|
cv::Ptr <BasicRetinaFilter> _multiuseFilter; |
|
cv::Ptr <RetinaColor> _colorEngine; |
|
|
|
//!< buffer used to convert input cv::Mat to internal retina buffers format (valarrays) |
|
std::valarray<float> _inputBuffer; |
|
std::valarray<float> _imageOutput; |
|
std::valarray<float> _temp2; |
|
float _meanLuminanceModulatorK; |
|
|
|
|
|
void _convertValarrayBuffer2cvMat(const std::valarray<float> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, OutputArray outBuffer) |
|
{ |
|
// fill output buffer with the valarray buffer |
|
const float *valarrayPTR=get_data(grayMatrixToConvert); |
|
if (!colorMode) |
|
{ |
|
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8U); |
|
Mat outMat = outBuffer.getMat(); |
|
for (unsigned int i=0;i<nbRows;++i) |
|
{ |
|
for (unsigned int j=0;j<nbColumns;++j) |
|
{ |
|
cv::Point2d pixel(j,i); |
|
outMat.at<unsigned char>(pixel)=(unsigned char)*(valarrayPTR++); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
const unsigned int nbPixels=nbColumns*nbRows; |
|
const unsigned int doubleNBpixels=nbColumns*nbRows*2; |
|
outBuffer.create(cv::Size(nbColumns, nbRows), CV_8UC3); |
|
Mat outMat = outBuffer.getMat(); |
|
for (unsigned int i=0;i<nbRows;++i) |
|
{ |
|
for (unsigned int j=0;j<nbColumns;++j,++valarrayPTR) |
|
{ |
|
cv::Point2d pixel(j,i); |
|
cv::Vec3b pixelValues; |
|
pixelValues[2]=(unsigned char)*(valarrayPTR); |
|
pixelValues[1]=(unsigned char)*(valarrayPTR+nbPixels); |
|
pixelValues[0]=(unsigned char)*(valarrayPTR+doubleNBpixels); |
|
|
|
outMat.at<cv::Vec3b>(pixel)=pixelValues; |
|
} |
|
} |
|
} |
|
} |
|
|
|
bool _convertCvMat2ValarrayBuffer(InputArray inputMat, std::valarray<float> &outputValarrayMatrix) |
|
{ |
|
const Mat inputMatToConvert=inputMat.getMat(); |
|
// first check input consistency |
|
if (inputMatToConvert.empty()) |
|
throw cv::Exception(-1, "RetinaImpl cannot be applied, input buffer is empty", "RetinaImpl::run", "RetinaImpl.h", 0); |
|
|
|
// retreive color mode from image input |
|
int imageNumberOfChannels = inputMatToConvert.channels(); |
|
|
|
// convert to float AND fill the valarray buffer |
|
typedef float T; // define here the target pixel format, here, float |
|
const int dsttype = DataType<T>::depth; // output buffer is float format |
|
|
|
const unsigned int nbPixels=inputMat.getMat().rows*inputMat.getMat().cols; |
|
const unsigned int doubleNBpixels=inputMat.getMat().rows*inputMat.getMat().cols*2; |
|
|
|
if(imageNumberOfChannels==4) |
|
{ |
|
// create a cv::Mat table (for RGBA planes) |
|
cv::Mat planes[4] = |
|
{ |
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]), |
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]), |
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]) |
|
}; |
|
planes[3] = cv::Mat(inputMatToConvert.size(), dsttype); // last channel (alpha) does not point on the valarray (not usefull in our case) |
|
// split color cv::Mat in 4 planes... it fills valarray directely |
|
cv::split(Mat_<Vec<T, 4> >(inputMatToConvert), planes); |
|
} |
|
else if (imageNumberOfChannels==3) |
|
{ |
|
// create a cv::Mat table (for RGB planes) |
|
cv::Mat planes[] = |
|
{ |
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[doubleNBpixels]), |
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[nbPixels]), |
|
cv::Mat(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]) |
|
}; |
|
// split color cv::Mat in 3 planes... it fills valarray directely |
|
cv::split(cv::Mat_<Vec<T, 3> >(inputMatToConvert), planes); |
|
} |
|
else if(imageNumberOfChannels==1) |
|
{ |
|
// create a cv::Mat header for the valarray |
|
cv::Mat dst(inputMatToConvert.size(), dsttype, &outputValarrayMatrix[0]); |
|
inputMatToConvert.convertTo(dst, dsttype); |
|
} |
|
else |
|
CV_Error(Error::StsUnsupportedFormat, "input image must be single channel (gray levels), bgr format (color) or bgra (color with transparency which won't be considered"); |
|
|
|
return imageNumberOfChannels>1; // return bool : false for gray level image processing, true for color mode |
|
} |
|
|
|
|
|
// run the initilized retina filter in order to perform gray image tone mapping, after this call all retina outputs are updated |
|
void _runGrayToneMapping(const std::valarray<float> &grayImageInput, std::valarray<float> &grayImageOutput) |
|
{ |
|
// apply tone mapping on the multiplexed image |
|
// -> photoreceptors local adaptation (large area adaptation) |
|
_multiuseFilter->runFilter_LPfilter(grayImageInput, grayImageOutput, 0); // compute low pass filtering modeling the horizontal cells filtering to acess local luminance |
|
_multiuseFilter->setV0CompressionParameterToneMapping(1.f, grayImageOutput.max(), _meanLuminanceModulatorK*grayImageOutput.sum()/(float)_multiuseFilter->getNBpixels()); |
|
_multiuseFilter->runFilter_LocalAdapdation(grayImageInput, grayImageOutput, _temp2); // adapt contrast to local luminance |
|
|
|
// -> ganglion cells local adaptation (short area adaptation) |
|
_multiuseFilter->runFilter_LPfilter(_temp2, grayImageOutput, 1); // compute low pass filtering (high cut frequency (remove spatio-temporal noise) |
|
_multiuseFilter->setV0CompressionParameterToneMapping(1.f, _temp2.max(), _meanLuminanceModulatorK*grayImageOutput.sum()/(float)_multiuseFilter->getNBpixels()); |
|
_multiuseFilter->runFilter_LocalAdapdation(_temp2, grayImageOutput, grayImageOutput); // adapt contrast to local luminance |
|
|
|
} |
|
|
|
// run the initilized retina filter in order to perform color tone mapping, after this call all retina outputs are updated |
|
void _runRGBToneMapping(const std::valarray<float> &RGBimageInput, std::valarray<float> &RGBimageOutput, const bool useAdaptiveFiltering) |
|
{ |
|
// multiplex the image with the color sampling method specified in the constructor |
|
_colorEngine->runColorMultiplexing(RGBimageInput); |
|
|
|
// apply tone mapping on the multiplexed image |
|
_runGrayToneMapping(_colorEngine->getMultiplexedFrame(), RGBimageOutput); |
|
|
|
// demultiplex tone maped image |
|
_colorEngine->runColorDemultiplexing(RGBimageOutput, useAdaptiveFiltering, _multiuseFilter->getMaxInputValue());//_ColorEngine->getMultiplexedFrame());//_ParvoRetinaFilter->getPhotoreceptorsLPfilteringOutput()); |
|
|
|
// rescaling result between 0 and 255 |
|
_colorEngine->normalizeRGBOutput_0_maxOutputValue(255.0); |
|
|
|
// return the result |
|
RGBimageOutput=_colorEngine->getDemultiplexedColorFrame(); |
|
} |
|
|
|
}; |
|
|
|
CV_EXPORTS Ptr<RetinaFastToneMapping> createRetinaFastToneMapping(Size inputSize) |
|
{ |
|
return makePtr<RetinaFastToneMappingImpl>(inputSize); |
|
} |
|
|
|
}// end of namespace bioinspired |
|
}// end of namespace cv
|
|
|