mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
471 lines
14 KiB
471 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/photo.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "hdr_common.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
inline void log_(const Mat& src, Mat& dst) |
|
{ |
|
max(src, Scalar::all(1e-4), dst); |
|
log(dst, dst); |
|
} |
|
|
|
class TonemapImpl CV_FINAL : public Tonemap |
|
{ |
|
public: |
|
TonemapImpl(float _gamma) : name("Tonemap"), gamma(_gamma) |
|
{ |
|
} |
|
|
|
void process(InputArray _src, OutputArray _dst) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert(!src.empty()); |
|
_dst.create(src.size(), CV_32FC3); |
|
Mat dst = _dst.getMat(); |
|
|
|
double min, max; |
|
minMaxLoc(src, &min, &max); |
|
if(max - min > DBL_EPSILON) { |
|
dst = (src - min) / (max - min); |
|
} else { |
|
src.copyTo(dst); |
|
} |
|
|
|
pow(dst, 1.0f / gamma, dst); |
|
} |
|
|
|
float getGamma() const CV_OVERRIDE { return gamma; } |
|
void setGamma(float val) CV_OVERRIDE { gamma = val; } |
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name |
|
<< "gamma" << gamma; |
|
} |
|
|
|
void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
gamma = fn["gamma"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
float gamma; |
|
}; |
|
|
|
Ptr<Tonemap> createTonemap(float gamma) |
|
{ |
|
return makePtr<TonemapImpl>(gamma); |
|
} |
|
|
|
class TonemapDragoImpl CV_FINAL : public TonemapDrago |
|
{ |
|
public: |
|
TonemapDragoImpl(float _gamma, float _saturation, float _bias) : |
|
name("TonemapDrago"), |
|
gamma(_gamma), |
|
saturation(_saturation), |
|
bias(_bias) |
|
{ |
|
} |
|
|
|
void process(InputArray _src, OutputArray _dst) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert(!src.empty()); |
|
_dst.create(src.size(), CV_32FC3); |
|
Mat img = _dst.getMat(); |
|
|
|
Ptr<Tonemap> linear = createTonemap(1.0f); |
|
linear->process(src, img); |
|
|
|
Mat gray_img; |
|
cvtColor(img, gray_img, COLOR_RGB2GRAY); |
|
Mat log_img; |
|
log_(gray_img, log_img); |
|
float mean = expf(static_cast<float>(sum(log_img)[0]) / log_img.total()); |
|
gray_img /= mean; |
|
log_img.release(); |
|
|
|
double max; |
|
minMaxLoc(gray_img, NULL, &max); |
|
CV_Assert(max > 0); |
|
|
|
Mat map; |
|
log(gray_img + 1.0f, map); |
|
Mat div; |
|
pow(gray_img / static_cast<float>(max), logf(bias) / logf(0.5f), div); |
|
log(2.0f + 8.0f * div, div); |
|
map = map.mul(1.0f / div); |
|
div.release(); |
|
|
|
mapLuminance(img, img, gray_img, map, saturation); |
|
|
|
linear->setGamma(gamma); |
|
linear->process(img, img); |
|
} |
|
|
|
float getGamma() const CV_OVERRIDE { return gamma; } |
|
void setGamma(float val) CV_OVERRIDE { gamma = val; } |
|
|
|
float getSaturation() const CV_OVERRIDE { return saturation; } |
|
void setSaturation(float val) CV_OVERRIDE { saturation = val; } |
|
|
|
float getBias() const CV_OVERRIDE { return bias; } |
|
void setBias(float val) CV_OVERRIDE { bias = val; } |
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name |
|
<< "gamma" << gamma |
|
<< "bias" << bias |
|
<< "saturation" << saturation; |
|
} |
|
|
|
void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
gamma = fn["gamma"]; |
|
bias = fn["bias"]; |
|
saturation = fn["saturation"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
float gamma, saturation, bias; |
|
}; |
|
|
|
Ptr<TonemapDrago> createTonemapDrago(float gamma, float saturation, float bias) |
|
{ |
|
return makePtr<TonemapDragoImpl>(gamma, saturation, bias); |
|
} |
|
|
|
class TonemapReinhardImpl CV_FINAL : public TonemapReinhard |
|
{ |
|
public: |
|
TonemapReinhardImpl(float _gamma, float _intensity, float _light_adapt, float _color_adapt) : |
|
name("TonemapReinhard"), |
|
gamma(_gamma), |
|
intensity(_intensity), |
|
light_adapt(_light_adapt), |
|
color_adapt(_color_adapt) |
|
{ |
|
} |
|
|
|
void process(InputArray _src, OutputArray _dst) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert(!src.empty()); |
|
_dst.create(src.size(), CV_32FC3); |
|
Mat img = _dst.getMat(); |
|
Ptr<Tonemap> linear = createTonemap(1.0f); |
|
linear->process(src, img); |
|
|
|
Mat gray_img; |
|
cvtColor(img, gray_img, COLOR_RGB2GRAY); |
|
Mat log_img; |
|
log_(gray_img, log_img); |
|
|
|
float log_mean = static_cast<float>(sum(log_img)[0] / log_img.total()); |
|
double log_min, log_max; |
|
minMaxLoc(log_img, &log_min, &log_max); |
|
log_img.release(); |
|
|
|
double key = static_cast<float>((log_max - log_mean) / (log_max - log_min)); |
|
float map_key = 0.3f + 0.7f * pow(static_cast<float>(key), 1.4f); |
|
intensity = exp(-intensity); |
|
Scalar chan_mean = mean(img); |
|
float gray_mean = static_cast<float>(mean(gray_img)[0]); |
|
|
|
std::vector<Mat> channels(3); |
|
split(img, channels); |
|
|
|
for(int i = 0; i < 3; i++) { |
|
float global = color_adapt * static_cast<float>(chan_mean[i]) + (1.0f - color_adapt) * gray_mean; |
|
Mat adapt = color_adapt * channels[i] + (1.0f - color_adapt) * gray_img; |
|
adapt = light_adapt * adapt + (1.0f - light_adapt) * global; |
|
pow(intensity * adapt, map_key, adapt); |
|
channels[i] = channels[i].mul(1.0f / (adapt + channels[i])); |
|
} |
|
gray_img.release(); |
|
merge(channels, img); |
|
|
|
linear->setGamma(gamma); |
|
linear->process(img, img); |
|
} |
|
|
|
float getGamma() const CV_OVERRIDE { return gamma; } |
|
void setGamma(float val) CV_OVERRIDE { gamma = val; } |
|
|
|
float getIntensity() const CV_OVERRIDE { return intensity; } |
|
void setIntensity(float val) CV_OVERRIDE { intensity = val; } |
|
|
|
float getLightAdaptation() const CV_OVERRIDE { return light_adapt; } |
|
void setLightAdaptation(float val) CV_OVERRIDE { light_adapt = val; } |
|
|
|
float getColorAdaptation() const CV_OVERRIDE { return color_adapt; } |
|
void setColorAdaptation(float val) CV_OVERRIDE { color_adapt = val; } |
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name |
|
<< "gamma" << gamma |
|
<< "intensity" << intensity |
|
<< "light_adapt" << light_adapt |
|
<< "color_adapt" << color_adapt; |
|
} |
|
|
|
void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
gamma = fn["gamma"]; |
|
intensity = fn["intensity"]; |
|
light_adapt = fn["light_adapt"]; |
|
color_adapt = fn["color_adapt"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
float gamma, intensity, light_adapt, color_adapt; |
|
}; |
|
|
|
Ptr<TonemapReinhard> createTonemapReinhard(float gamma, float contrast, float sigma_color, float sigma_space) |
|
{ |
|
return makePtr<TonemapReinhardImpl>(gamma, contrast, sigma_color, sigma_space); |
|
} |
|
|
|
class TonemapMantiukImpl CV_FINAL : public TonemapMantiuk |
|
{ |
|
public: |
|
TonemapMantiukImpl(float _gamma, float _scale, float _saturation) : |
|
name("TonemapMantiuk"), |
|
gamma(_gamma), |
|
scale(_scale), |
|
saturation(_saturation) |
|
{ |
|
} |
|
|
|
void process(InputArray _src, OutputArray _dst) CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert(!src.empty()); |
|
_dst.create(src.size(), CV_32FC3); |
|
Mat img = _dst.getMat(); |
|
Ptr<Tonemap> linear = createTonemap(1.0f); |
|
linear->process(src, img); |
|
|
|
Mat gray_img; |
|
cvtColor(img, gray_img, COLOR_RGB2GRAY); |
|
Mat log_img; |
|
log_(gray_img, log_img); |
|
|
|
std::vector<Mat> x_contrast, y_contrast; |
|
getContrast(log_img, x_contrast, y_contrast); |
|
|
|
for(size_t i = 0; i < x_contrast.size(); i++) { |
|
mapContrast(x_contrast[i]); |
|
mapContrast(y_contrast[i]); |
|
} |
|
|
|
Mat right(src.size(), CV_32F); |
|
calculateSum(x_contrast, y_contrast, right); |
|
|
|
Mat p, r, product, x = log_img; |
|
calculateProduct(x, r); |
|
r = right - r; |
|
r.copyTo(p); |
|
|
|
const float target_error = 1e-3f; |
|
float target_norm = static_cast<float>(right.dot(right)) * powf(target_error, 2.0f); |
|
int max_iterations = 100; |
|
float rr = static_cast<float>(r.dot(r)); |
|
|
|
for(int i = 0; i < max_iterations; i++) |
|
{ |
|
calculateProduct(p, product); |
|
double dprod = p.dot(product); |
|
CV_Assert(fabs(dprod) > 0); |
|
float alpha = rr / static_cast<float>(dprod); |
|
|
|
r -= alpha * product; |
|
x += alpha * p; |
|
|
|
float new_rr = static_cast<float>(r.dot(r)); |
|
CV_Assert(fabs(rr) > 0); |
|
p = r + (new_rr / rr) * p; |
|
rr = new_rr; |
|
|
|
if(rr < target_norm) { |
|
break; |
|
} |
|
} |
|
exp(x, x); |
|
mapLuminance(img, img, gray_img, x, saturation); |
|
|
|
linear = createTonemap(gamma); |
|
linear->process(img, img); |
|
} |
|
|
|
float getGamma() const CV_OVERRIDE { return gamma; } |
|
void setGamma(float val) CV_OVERRIDE { gamma = val; } |
|
|
|
float getScale() const CV_OVERRIDE { return scale; } |
|
void setScale(float val) CV_OVERRIDE { scale = val; } |
|
|
|
float getSaturation() const CV_OVERRIDE { return saturation; } |
|
void setSaturation(float val) CV_OVERRIDE { saturation = val; } |
|
|
|
void write(FileStorage& fs) const CV_OVERRIDE |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << name |
|
<< "gamma" << gamma |
|
<< "scale" << scale |
|
<< "saturation" << saturation; |
|
} |
|
|
|
void read(const FileNode& fn) CV_OVERRIDE |
|
{ |
|
FileNode n = fn["name"]; |
|
CV_Assert(n.isString() && String(n) == name); |
|
gamma = fn["gamma"]; |
|
scale = fn["scale"]; |
|
saturation = fn["saturation"]; |
|
} |
|
|
|
protected: |
|
String name; |
|
float gamma, scale, saturation; |
|
|
|
void signedPow(Mat src, float power, Mat& dst) |
|
{ |
|
Mat sign = (src > 0); |
|
sign.convertTo(sign, CV_32F, 1.0f/255.0f); |
|
sign = sign * 2.0f - 1.0f; |
|
pow(abs(src), power, dst); |
|
dst = dst.mul(sign); |
|
} |
|
|
|
void mapContrast(Mat& contrast) |
|
{ |
|
const float response_power = 0.4185f; |
|
signedPow(contrast, response_power, contrast); |
|
contrast *= scale; |
|
signedPow(contrast, 1.0f / response_power, contrast); |
|
} |
|
|
|
void getGradient(Mat src, Mat& dst, int pos) |
|
{ |
|
dst = Mat::zeros(src.size(), CV_32F); |
|
Mat a, b; |
|
Mat grad = src.colRange(1, src.cols) - src.colRange(0, src.cols - 1); |
|
grad.copyTo(dst.colRange(pos, src.cols + pos - 1)); |
|
if(pos == 1) { |
|
src.col(0).copyTo(dst.col(0)); |
|
} |
|
} |
|
|
|
void getContrast(Mat src, std::vector<Mat>& x_contrast, std::vector<Mat>& y_contrast) |
|
{ |
|
int levels = static_cast<int>(logf(static_cast<float>(min(src.rows, src.cols))) / logf(2.0f)); |
|
x_contrast.resize(levels); |
|
y_contrast.resize(levels); |
|
|
|
Mat layer; |
|
src.copyTo(layer); |
|
for(int i = 0; i < levels; i++) { |
|
getGradient(layer, x_contrast[i], 0); |
|
getGradient(layer.t(), y_contrast[i], 0); |
|
resize(layer, layer, Size(layer.cols / 2, layer.rows / 2), 0, 0, INTER_LINEAR); |
|
} |
|
} |
|
|
|
void calculateSum(std::vector<Mat>& x_contrast, std::vector<Mat>& y_contrast, Mat& sum) |
|
{ |
|
if (x_contrast.empty()) |
|
return; |
|
const int last = (int)x_contrast.size() - 1; |
|
sum = Mat::zeros(x_contrast[last].size(), CV_32F); |
|
for(int i = last; i >= 0; i--) |
|
{ |
|
Mat grad_x, grad_y; |
|
getGradient(x_contrast[i], grad_x, 1); |
|
getGradient(y_contrast[i], grad_y, 1); |
|
resize(sum, sum, x_contrast[i].size(), 0, 0, INTER_LINEAR); |
|
sum += grad_x + grad_y.t(); |
|
} |
|
} |
|
|
|
void calculateProduct(Mat src, Mat& dst) |
|
{ |
|
std::vector<Mat> x_contrast, y_contrast; |
|
getContrast(src, x_contrast, y_contrast); |
|
calculateSum(x_contrast, y_contrast, dst); |
|
} |
|
}; |
|
|
|
Ptr<TonemapMantiuk> createTonemapMantiuk(float gamma, float scale, float saturation) |
|
{ |
|
return makePtr<TonemapMantiukImpl>(gamma, scale, saturation); |
|
} |
|
|
|
}
|
|
|