Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

182 lines
6.2 KiB

// This example provides a digital recognition based on LeNet-5 and connected component analysis.
// It makes it possible for OpenCV beginner to run dnn models in real time using only CPU.
// It can read pictures from the camera in real time to make predictions, and display the recognized digits as overlays on top of the original digits.
//
// In order to achieve a better display effect, please write the number on white paper and occupy the entire camera.
//
// You can follow the following guide to train LeNet-5 by yourself using the MNIST dataset.
// https://github.com/intel/caffe/blob/a3d5b022fe026e9092fc7abc7654b1162ab9940d/examples/mnist/readme.md
//
// You can also download already trained model directly.
// https://github.com/zihaomu/opencv_digit_text_recognition_demo/tree/master/src
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <vector>
using namespace cv;
using namespace cv::dnn;
const char *keys =
"{ help h | | Print help message. }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ device | 0 | camera device number. }"
"{ modelBin | | Path to a binary .caffemodel file contains trained network.}"
"{ modelTxt | | Path to a .prototxt file contains the model definition of trained network.}"
"{ width | 640 | Set the width of the camera }"
"{ height | 480 | Set the height of the camera }"
"{ thr | 0.7 | Confidence threshold. }";
// Find best class for the blob (i.e. class with maximal probability)
static void getMaxClass(const Mat &probBlob, int &classId, double &classProb);
void predictor(Net net, const Mat &roi, int &class_id, double &probability);
int main(int argc, char **argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
int vWidth = parser.get<int>("width");
int vHeight = parser.get<int>("height");
float confThreshold = parser.get<float>("thr");
std::string modelTxt = parser.get<String>("modelTxt");
std::string modelBin = parser.get<String>("modelBin");
Net net;
try
{
net = readNet(modelTxt, modelBin);
}
catch (cv::Exception &ee)
{
std::cerr << "Exception: " << ee.what() << std::endl;
std::cout << "Can't load the network by using the flowing files:" << std::endl;
std::cout << "modelTxt: " << modelTxt << std::endl;
std::cout << "modelBin: " << modelBin << std::endl;
return 1;
}
const std::string resultWinName = "Please write the number on white paper and occupy the entire camera.";
const std::string preWinName = "Preprocessing";
namedWindow(preWinName, WINDOW_AUTOSIZE);
namedWindow(resultWinName, WINDOW_AUTOSIZE);
Mat labels, stats, centroids;
Point position;
Rect getRectangle;
bool ifDrawingBox = false;
int classId = 0;
double probability = 0;
Rect basicRect = Rect(0, 0, vWidth, vHeight);
Mat rawImage;
double fps = 0;
// Open a video file or an image file or a camera stream.
VideoCapture cap;
if (parser.has("input"))
cap.open(parser.get<String>("input"));
else
cap.open(parser.get<int>("device"));
TickMeter tm;
while (waitKey(1) < 0)
{
cap >> rawImage;
if (rawImage.empty())
{
waitKey();
break;
}
tm.reset();
tm.start();
Mat image = rawImage.clone();
// Image preprocessing
cvtColor(image, image, COLOR_BGR2GRAY);
GaussianBlur(image, image, Size(3, 3), 2, 2);
adaptiveThreshold(image, image, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 25, 10);
bitwise_not(image, image);
Mat element = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1,-1));
dilate(image, image, element, Point(-1,-1), 1);
// Find connected component
int nccomps = cv::connectedComponentsWithStats(image, labels, stats, centroids);
for (int i = 1; i < nccomps; i++)
{
ifDrawingBox = false;
// Extend the bounding box of connected component for easier recognition
if (stats.at<int>(i - 1, CC_STAT_AREA) > 80 && stats.at<int>(i - 1, CC_STAT_AREA) < 3000)
{
ifDrawingBox = true;
int left = stats.at<int>(i - 1, CC_STAT_HEIGHT) / 4;
getRectangle = Rect(stats.at<int>(i - 1, CC_STAT_LEFT) - left, stats.at<int>(i - 1, CC_STAT_TOP) - left, stats.at<int>(i - 1, CC_STAT_WIDTH) + 2 * left, stats.at<int>(i - 1, CC_STAT_HEIGHT) + 2 * left);
getRectangle &= basicRect;
}
if (ifDrawingBox && !getRectangle.empty())
{
Mat roi = image(getRectangle);
predictor(net, roi, classId, probability);
if (probability < confThreshold)
continue;
rectangle(rawImage, getRectangle, Scalar(128, 255, 128), 2);
position = Point(getRectangle.br().x - 7, getRectangle.br().y + 25);
putText(rawImage, std::to_string(classId), position, 3, 1.0, Scalar(128, 128, 255), 2);
}
}
tm.stop();
fps = 1 / tm.getTimeSec();
std::string fpsString = format("Inference FPS: %.2f.", fps);
putText(rawImage, fpsString, Point(5, 20), FONT_HERSHEY_SIMPLEX, 0.6, Scalar(128, 255, 128));
imshow(resultWinName, rawImage);
imshow(preWinName, image);
}
return 0;
}
static void getMaxClass(const Mat &probBlob, int &classId, double &classProb)
{
Mat probMat = probBlob.reshape(1, 1);
Point classNumber;
minMaxLoc(probMat, NULL, &classProb, NULL, &classNumber);
classId = classNumber.x;
}
void predictor(Net net, const Mat &roi, int &classId, double &probability)
{
Mat pred;
// Convert Mat to batch of images
Mat inputBlob = dnn::blobFromImage(roi, 1.0, Size(28, 28));
// Set the network input
net.setInput(inputBlob);
// Compute output
pred = net.forward();
getMaxClass(pred, classId, probability);
}