mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3767 lines
134 KiB
3767 lines
134 KiB
/* |
|
* The copyright in this software is being made available under the 2-clauses |
|
* BSD License, included below. This software may be subject to other third |
|
* party and contributor rights, including patent rights, and no such rights |
|
* are granted under this license. |
|
* |
|
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
|
* Copyright (c) 2002-2014, Professor Benoit Macq |
|
* Copyright (c) 2001-2003, David Janssens |
|
* Copyright (c) 2002-2003, Yannick Verschueren |
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux |
|
* Copyright (c) 2003-2014, Antonin Descampe |
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team |
|
* Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> |
|
* Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> |
|
* Copyright (c) 2017, IntoPIX SA <support@intopix.com> |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
#include <assert.h> |
|
|
|
#define OPJ_SKIP_POISON |
|
#include "opj_includes.h" |
|
|
|
#ifdef __SSE__ |
|
#include <xmmintrin.h> |
|
#endif |
|
#ifdef __SSE2__ |
|
#include <emmintrin.h> |
|
#endif |
|
#ifdef __SSSE3__ |
|
#include <tmmintrin.h> |
|
#endif |
|
#ifdef __AVX2__ |
|
#include <immintrin.h> |
|
#endif |
|
|
|
#if defined(__GNUC__) |
|
#pragma GCC poison malloc calloc realloc free |
|
#endif |
|
|
|
/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ |
|
/*@{*/ |
|
|
|
#define OPJ_WS(i) v->mem[(i)*2] |
|
#define OPJ_WD(i) v->mem[(1+(i)*2)] |
|
|
|
#ifdef __AVX2__ |
|
/** Number of int32 values in a AVX2 register */ |
|
#define VREG_INT_COUNT 8 |
|
#else |
|
/** Number of int32 values in a SSE2 register */ |
|
#define VREG_INT_COUNT 4 |
|
#endif |
|
|
|
/** Number of columns that we can process in parallel in the vertical pass */ |
|
#define PARALLEL_COLS_53 (2*VREG_INT_COUNT) |
|
|
|
/** @name Local data structures */ |
|
/*@{*/ |
|
|
|
typedef struct dwt_local { |
|
OPJ_INT32* mem; |
|
OPJ_INT32 dn; /* number of elements in high pass band */ |
|
OPJ_INT32 sn; /* number of elements in low pass band */ |
|
OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */ |
|
} opj_dwt_t; |
|
|
|
#define NB_ELTS_V8 8 |
|
|
|
typedef union { |
|
OPJ_FLOAT32 f[NB_ELTS_V8]; |
|
} opj_v8_t; |
|
|
|
typedef struct v8dwt_local { |
|
opj_v8_t* wavelet ; |
|
OPJ_INT32 dn ; /* number of elements in high pass band */ |
|
OPJ_INT32 sn ; /* number of elements in low pass band */ |
|
OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */ |
|
OPJ_UINT32 win_l_x0; /* start coord in low pass band */ |
|
OPJ_UINT32 win_l_x1; /* end coord in low pass band */ |
|
OPJ_UINT32 win_h_x0; /* start coord in high pass band */ |
|
OPJ_UINT32 win_h_x1; /* end coord in high pass band */ |
|
} opj_v8dwt_t ; |
|
|
|
/* From table F.4 from the standard */ |
|
static const OPJ_FLOAT32 opj_dwt_alpha = -1.586134342f; |
|
static const OPJ_FLOAT32 opj_dwt_beta = -0.052980118f; |
|
static const OPJ_FLOAT32 opj_dwt_gamma = 0.882911075f; |
|
static const OPJ_FLOAT32 opj_dwt_delta = 0.443506852f; |
|
|
|
static const OPJ_FLOAT32 opj_K = 1.230174105f; |
|
static const OPJ_FLOAT32 opj_invK = (OPJ_FLOAT32)(1.0 / 1.230174105); |
|
|
|
/*@}*/ |
|
|
|
/** @name Local static functions */ |
|
/*@{*/ |
|
|
|
/** |
|
Forward lazy transform (horizontal) |
|
*/ |
|
static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a, |
|
OPJ_INT32 * OPJ_RESTRICT b, |
|
OPJ_INT32 dn, |
|
OPJ_INT32 sn, OPJ_INT32 cas); |
|
|
|
/** |
|
Forward 9-7 wavelet transform in 1-D |
|
*/ |
|
static void opj_dwt_encode_1_real(void *a, OPJ_INT32 dn, OPJ_INT32 sn, |
|
OPJ_INT32 cas); |
|
/** |
|
Explicit calculation of the Quantization Stepsizes |
|
*/ |
|
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
|
opj_stepsize_t *bandno_stepsize); |
|
/** |
|
Inverse wavelet transform in 2-D. |
|
*/ |
|
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
|
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i); |
|
|
|
static OPJ_BOOL opj_dwt_decode_partial_tile( |
|
opj_tcd_tilecomp_t* tilec, |
|
OPJ_UINT32 numres); |
|
|
|
/* Forward transform, for the vertical pass, processing cols columns */ |
|
/* where cols <= NB_ELTS_V8 */ |
|
/* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */ |
|
typedef void (*opj_encode_and_deinterleave_v_fnptr_type)( |
|
void *array, |
|
void *tmp, |
|
OPJ_UINT32 height, |
|
OPJ_BOOL even, |
|
OPJ_UINT32 stride_width, |
|
OPJ_UINT32 cols); |
|
|
|
/* Where void* is a OPJ_INT32* for 5x3 and OPJ_FLOAT32* for 9x7 */ |
|
typedef void (*opj_encode_and_deinterleave_h_one_row_fnptr_type)( |
|
void *row, |
|
void *tmp, |
|
OPJ_UINT32 width, |
|
OPJ_BOOL even); |
|
|
|
static OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp, |
|
opj_tcd_tilecomp_t * tilec, |
|
opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v, |
|
opj_encode_and_deinterleave_h_one_row_fnptr_type |
|
p_encode_and_deinterleave_h_one_row); |
|
|
|
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
|
OPJ_UINT32 i); |
|
|
|
/* <summary> */ |
|
/* Inverse 9-7 wavelet transform in 1-D. */ |
|
/* </summary> */ |
|
|
|
/*@}*/ |
|
|
|
/*@}*/ |
|
|
|
#define OPJ_S(i) a[(i)*2] |
|
#define OPJ_D(i) a[(1+(i)*2)] |
|
#define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i))) |
|
#define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i))) |
|
/* new */ |
|
#define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i))) |
|
#define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i))) |
|
|
|
/* <summary> */ |
|
/* This table contains the norms of the 5-3 wavelets for different bands. */ |
|
/* </summary> */ |
|
/* FIXME! the array should really be extended up to 33 resolution levels */ |
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */ |
|
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { |
|
{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, |
|
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
|
{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
|
{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} |
|
}; |
|
|
|
/* <summary> */ |
|
/* This table contains the norms of the 9-7 wavelets for different bands. */ |
|
/* </summary> */ |
|
/* FIXME! the array should really be extended up to 33 resolution levels */ |
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */ |
|
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { |
|
{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, |
|
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
|
{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
|
{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} |
|
}; |
|
|
|
/* |
|
========================================================== |
|
local functions |
|
========================================================== |
|
*/ |
|
|
|
/* <summary> */ |
|
/* Forward lazy transform (horizontal). */ |
|
/* </summary> */ |
|
static void opj_dwt_deinterleave_h(const OPJ_INT32 * OPJ_RESTRICT a, |
|
OPJ_INT32 * OPJ_RESTRICT b, |
|
OPJ_INT32 dn, |
|
OPJ_INT32 sn, OPJ_INT32 cas) |
|
{ |
|
OPJ_INT32 i; |
|
OPJ_INT32 * OPJ_RESTRICT l_dest = b; |
|
const OPJ_INT32 * OPJ_RESTRICT l_src = a + cas; |
|
|
|
for (i = 0; i < sn; ++i) { |
|
*l_dest++ = *l_src; |
|
l_src += 2; |
|
} |
|
|
|
l_dest = b + sn; |
|
l_src = a + 1 - cas; |
|
|
|
for (i = 0; i < dn; ++i) { |
|
*l_dest++ = *l_src; |
|
l_src += 2; |
|
} |
|
} |
|
|
|
#ifdef STANDARD_SLOW_VERSION |
|
/* <summary> */ |
|
/* Inverse lazy transform (horizontal). */ |
|
/* </summary> */ |
|
static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a) |
|
{ |
|
const OPJ_INT32 *ai = a; |
|
OPJ_INT32 *bi = h->mem + h->cas; |
|
OPJ_INT32 i = h->sn; |
|
while (i--) { |
|
*bi = *(ai++); |
|
bi += 2; |
|
} |
|
ai = a + h->sn; |
|
bi = h->mem + 1 - h->cas; |
|
i = h->dn ; |
|
while (i--) { |
|
*bi = *(ai++); |
|
bi += 2; |
|
} |
|
} |
|
|
|
/* <summary> */ |
|
/* Inverse lazy transform (vertical). */ |
|
/* </summary> */ |
|
static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) |
|
{ |
|
const OPJ_INT32 *ai = a; |
|
OPJ_INT32 *bi = v->mem + v->cas; |
|
OPJ_INT32 i = v->sn; |
|
while (i--) { |
|
*bi = *ai; |
|
bi += 2; |
|
ai += x; |
|
} |
|
ai = a + (v->sn * (OPJ_SIZE_T)x); |
|
bi = v->mem + 1 - v->cas; |
|
i = v->dn ; |
|
while (i--) { |
|
*bi = *ai; |
|
bi += 2; |
|
ai += x; |
|
} |
|
} |
|
|
|
#endif /* STANDARD_SLOW_VERSION */ |
|
|
|
#ifdef STANDARD_SLOW_VERSION |
|
/* <summary> */ |
|
/* Inverse 5-3 wavelet transform in 1-D. */ |
|
/* </summary> */ |
|
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
|
OPJ_INT32 cas) |
|
{ |
|
OPJ_INT32 i; |
|
|
|
if (!cas) { |
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
|
for (i = 0; i < sn; i++) { |
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
|
} |
|
for (i = 0; i < dn; i++) { |
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
|
} |
|
} |
|
} else { |
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
|
OPJ_S(0) /= 2; |
|
} else { |
|
for (i = 0; i < sn; i++) { |
|
OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
|
} |
|
for (i = 0; i < dn; i++) { |
|
OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void opj_dwt_decode_1(const opj_dwt_t *v) |
|
{ |
|
opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); |
|
} |
|
|
|
#endif /* STANDARD_SLOW_VERSION */ |
|
|
|
#if !defined(STANDARD_SLOW_VERSION) |
|
static void opj_idwt53_h_cas0(OPJ_INT32* tmp, |
|
const OPJ_INT32 sn, |
|
const OPJ_INT32 len, |
|
OPJ_INT32* tiledp) |
|
{ |
|
OPJ_INT32 i, j; |
|
const OPJ_INT32* in_even = &tiledp[0]; |
|
const OPJ_INT32* in_odd = &tiledp[sn]; |
|
|
|
#ifdef TWO_PASS_VERSION |
|
/* For documentation purpose: performs lifting in two iterations, */ |
|
/* but without explicit interleaving */ |
|
|
|
assert(len > 1); |
|
|
|
/* Even */ |
|
tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1); |
|
for (i = 2, j = 0; i <= len - 2; i += 2, j++) { |
|
tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2); |
|
} |
|
if (len & 1) { /* if len is odd */ |
|
tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1); |
|
} |
|
|
|
/* Odd */ |
|
for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
|
tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1); |
|
} |
|
if (!(len & 1)) { /* if len is even */ |
|
tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2]; |
|
} |
|
#else |
|
OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
|
|
|
assert(len > 1); |
|
|
|
/* Improved version of the TWO_PASS_VERSION: */ |
|
/* Performs lifting in one single iteration. Saves memory */ |
|
/* accesses and explicit interleaving. */ |
|
s1n = in_even[0]; |
|
d1n = in_odd[0]; |
|
s0n = s1n - ((d1n + 1) >> 1); |
|
|
|
for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
|
d1c = d1n; |
|
s0c = s0n; |
|
|
|
s1n = in_even[j]; |
|
d1n = in_odd[j]; |
|
|
|
s0n = s1n - ((d1c + d1n + 2) >> 2); |
|
|
|
tmp[i ] = s0c; |
|
tmp[i + 1] = opj_int_add_no_overflow(d1c, opj_int_add_no_overflow(s0c, |
|
s0n) >> 1); |
|
} |
|
|
|
tmp[i] = s0n; |
|
|
|
if (len & 1) { |
|
tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1); |
|
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
|
} else { |
|
tmp[len - 1] = d1n + s0n; |
|
} |
|
#endif |
|
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
|
} |
|
|
|
static void opj_idwt53_h_cas1(OPJ_INT32* tmp, |
|
const OPJ_INT32 sn, |
|
const OPJ_INT32 len, |
|
OPJ_INT32* tiledp) |
|
{ |
|
OPJ_INT32 i, j; |
|
const OPJ_INT32* in_even = &tiledp[sn]; |
|
const OPJ_INT32* in_odd = &tiledp[0]; |
|
|
|
#ifdef TWO_PASS_VERSION |
|
/* For documentation purpose: performs lifting in two iterations, */ |
|
/* but without explicit interleaving */ |
|
|
|
assert(len > 2); |
|
|
|
/* Odd */ |
|
for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
|
tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2); |
|
} |
|
if (!(len & 1)) { |
|
tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1); |
|
} |
|
|
|
/* Even */ |
|
tmp[0] = in_even[0] + tmp[1]; |
|
for (i = 2, j = 1; i < len - 1; i += 2, j++) { |
|
tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1); |
|
} |
|
if (len & 1) { |
|
tmp[len - 1] = in_even[len / 2] + tmp[len - 2]; |
|
} |
|
#else |
|
OPJ_INT32 s1, s2, dc, dn; |
|
|
|
assert(len > 2); |
|
|
|
/* Improved version of the TWO_PASS_VERSION: */ |
|
/* Performs lifting in one single iteration. Saves memory */ |
|
/* accesses and explicit interleaving. */ |
|
|
|
s1 = in_even[1]; |
|
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
|
tmp[0] = in_even[0] + dc; |
|
|
|
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
|
|
|
s2 = in_even[j + 1]; |
|
|
|
dn = in_odd[j] - ((s1 + s2 + 2) >> 2); |
|
tmp[i ] = dc; |
|
tmp[i + 1] = opj_int_add_no_overflow(s1, opj_int_add_no_overflow(dn, dc) >> 1); |
|
|
|
dc = dn; |
|
s1 = s2; |
|
} |
|
|
|
tmp[i] = dc; |
|
|
|
if (!(len & 1)) { |
|
dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1); |
|
tmp[len - 2] = s1 + ((dn + dc) >> 1); |
|
tmp[len - 1] = dn; |
|
} else { |
|
tmp[len - 1] = s1 + dc; |
|
} |
|
#endif |
|
memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
|
} |
|
|
|
|
|
#endif /* !defined(STANDARD_SLOW_VERSION) */ |
|
|
|
/* <summary> */ |
|
/* Inverse 5-3 wavelet transform in 1-D for one row. */ |
|
/* </summary> */ |
|
/* Performs interleave, inverse wavelet transform and copy back to buffer */ |
|
static void opj_idwt53_h(const opj_dwt_t *dwt, |
|
OPJ_INT32* tiledp) |
|
{ |
|
#ifdef STANDARD_SLOW_VERSION |
|
/* For documentation purpose */ |
|
opj_dwt_interleave_h(dwt, tiledp); |
|
opj_dwt_decode_1(dwt); |
|
memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32)); |
|
#else |
|
const OPJ_INT32 sn = dwt->sn; |
|
const OPJ_INT32 len = sn + dwt->dn; |
|
if (dwt->cas == 0) { /* Left-most sample is on even coordinate */ |
|
if (len > 1) { |
|
opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp); |
|
} else { |
|
/* Unmodified value */ |
|
} |
|
} else { /* Left-most sample is on odd coordinate */ |
|
if (len == 1) { |
|
tiledp[0] /= 2; |
|
} else if (len == 2) { |
|
OPJ_INT32* out = dwt->mem; |
|
const OPJ_INT32* in_even = &tiledp[sn]; |
|
const OPJ_INT32* in_odd = &tiledp[0]; |
|
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
|
out[0] = in_even[0] + out[1]; |
|
memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
|
} else if (len > 2) { |
|
opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp); |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
#if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) |
|
|
|
/* Conveniency macros to improve the readability of the formulas */ |
|
#if __AVX2__ |
|
#define VREG __m256i |
|
#define LOAD_CST(x) _mm256_set1_epi32(x) |
|
#define LOAD(x) _mm256_load_si256((const VREG*)(x)) |
|
#define LOADU(x) _mm256_loadu_si256((const VREG*)(x)) |
|
#define STORE(x,y) _mm256_store_si256((VREG*)(x),(y)) |
|
#define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y)) |
|
#define ADD(x,y) _mm256_add_epi32((x),(y)) |
|
#define SUB(x,y) _mm256_sub_epi32((x),(y)) |
|
#define SAR(x,y) _mm256_srai_epi32((x),(y)) |
|
#else |
|
#define VREG __m128i |
|
#define LOAD_CST(x) _mm_set1_epi32(x) |
|
#define LOAD(x) _mm_load_si128((const VREG*)(x)) |
|
#define LOADU(x) _mm_loadu_si128((const VREG*)(x)) |
|
#define STORE(x,y) _mm_store_si128((VREG*)(x),(y)) |
|
#define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y)) |
|
#define ADD(x,y) _mm_add_epi32((x),(y)) |
|
#define SUB(x,y) _mm_sub_epi32((x),(y)) |
|
#define SAR(x,y) _mm_srai_epi32((x),(y)) |
|
#endif |
|
#define ADD3(x,y,z) ADD(ADD(x,y),z) |
|
|
|
static |
|
void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col, |
|
const OPJ_INT32* tmp, |
|
OPJ_INT32 len, |
|
OPJ_SIZE_T stride) |
|
{ |
|
OPJ_INT32 i; |
|
for (i = 0; i < len; ++i) { |
|
/* A memcpy(&tiledp_col[i * stride + 0], |
|
&tmp[PARALLEL_COLS_53 * i + 0], |
|
PARALLEL_COLS_53 * sizeof(OPJ_INT32)) |
|
would do but would be a tiny bit slower. |
|
We can take here advantage of our knowledge of alignment */ |
|
STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0], |
|
LOAD(&tmp[PARALLEL_COLS_53 * i + 0])); |
|
STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT], |
|
LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT])); |
|
} |
|
} |
|
|
|
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
|
* 16 in AVX2, when top-most pixel is on even coordinate */ |
|
static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2( |
|
OPJ_INT32* tmp, |
|
const OPJ_INT32 sn, |
|
const OPJ_INT32 len, |
|
OPJ_INT32* tiledp_col, |
|
const OPJ_SIZE_T stride) |
|
{ |
|
const OPJ_INT32* in_even = &tiledp_col[0]; |
|
const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
|
|
|
OPJ_INT32 i; |
|
OPJ_SIZE_T j; |
|
VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0; |
|
VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1; |
|
const VREG two = LOAD_CST(2); |
|
|
|
assert(len > 1); |
|
#if __AVX2__ |
|
assert(PARALLEL_COLS_53 == 16); |
|
assert(VREG_INT_COUNT == 8); |
|
#else |
|
assert(PARALLEL_COLS_53 == 8); |
|
assert(VREG_INT_COUNT == 4); |
|
#endif |
|
|
|
/* Note: loads of input even/odd values must be done in a unaligned */ |
|
/* fashion. But stores in tmp can be done with aligned store, since */ |
|
/* the temporary buffer is properly aligned */ |
|
assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
|
|
|
s1n_0 = LOADU(in_even + 0); |
|
s1n_1 = LOADU(in_even + VREG_INT_COUNT); |
|
d1n_0 = LOADU(in_odd); |
|
d1n_1 = LOADU(in_odd + VREG_INT_COUNT); |
|
|
|
/* s0n = s1n - ((d1n + 1) >> 1); <==> */ |
|
/* s0n = s1n - ((d1n + d1n + 2) >> 2); */ |
|
s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
|
s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
|
|
|
for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
|
d1c_0 = d1n_0; |
|
s0c_0 = s0n_0; |
|
d1c_1 = d1n_1; |
|
s0c_1 = s0n_1; |
|
|
|
s1n_0 = LOADU(in_even + j * stride); |
|
s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT); |
|
d1n_0 = LOADU(in_odd + j * stride); |
|
d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT); |
|
|
|
/*s0n = s1n - ((d1c + d1n + 2) >> 2);*/ |
|
s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2)); |
|
s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2)); |
|
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0); |
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1); |
|
|
|
/* d1c + ((s0c + s0n) >> 1) */ |
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
|
ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1))); |
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
|
ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1))); |
|
} |
|
|
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0); |
|
STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1); |
|
|
|
if (len & 1) { |
|
VREG tmp_len_minus_1; |
|
s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride); |
|
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
|
tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1); |
|
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2), |
|
ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1))); |
|
|
|
s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT); |
|
/* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
|
tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
|
tmp_len_minus_1); |
|
/* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
|
ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1))); |
|
|
|
|
|
} else { |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, |
|
ADD(d1n_0, s0n_0)); |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
|
ADD(d1n_1, s0n_1)); |
|
} |
|
|
|
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
|
} |
|
|
|
|
|
/** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
|
* 16 in AVX2, when top-most pixel is on odd coordinate */ |
|
static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2( |
|
OPJ_INT32* tmp, |
|
const OPJ_INT32 sn, |
|
const OPJ_INT32 len, |
|
OPJ_INT32* tiledp_col, |
|
const OPJ_SIZE_T stride) |
|
{ |
|
OPJ_INT32 i; |
|
OPJ_SIZE_T j; |
|
|
|
VREG s1_0, s2_0, dc_0, dn_0; |
|
VREG s1_1, s2_1, dc_1, dn_1; |
|
const VREG two = LOAD_CST(2); |
|
|
|
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
|
const OPJ_INT32* in_odd = &tiledp_col[0]; |
|
|
|
assert(len > 2); |
|
#if __AVX2__ |
|
assert(PARALLEL_COLS_53 == 16); |
|
assert(VREG_INT_COUNT == 8); |
|
#else |
|
assert(PARALLEL_COLS_53 == 8); |
|
assert(VREG_INT_COUNT == 4); |
|
#endif |
|
|
|
/* Note: loads of input even/odd values must be done in a unaligned */ |
|
/* fashion. But stores in tmp can be done with aligned store, since */ |
|
/* the temporary buffer is properly aligned */ |
|
assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
|
|
|
s1_0 = LOADU(in_even + stride); |
|
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
|
dc_0 = SUB(LOADU(in_odd + 0), |
|
SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2)); |
|
STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0)); |
|
|
|
s1_1 = LOADU(in_even + stride + VREG_INT_COUNT); |
|
/* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
|
dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT), |
|
SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2)); |
|
STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT, |
|
ADD(LOADU(in_even + VREG_INT_COUNT), dc_1)); |
|
|
|
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
|
|
|
s2_0 = LOADU(in_even + (j + 1) * stride); |
|
s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT); |
|
|
|
/* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */ |
|
dn_0 = SUB(LOADU(in_odd + j * stride), |
|
SAR(ADD3(s1_0, s2_0, two), 2)); |
|
dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT), |
|
SAR(ADD3(s1_1, s2_1, two), 2)); |
|
|
|
STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
|
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
|
|
|
/* tmp[i + 1] = s1 + ((dn + dc) >> 1); */ |
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
|
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
|
STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
|
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
|
|
|
dc_0 = dn_0; |
|
s1_0 = s2_0; |
|
dc_1 = dn_1; |
|
s1_1 = s2_1; |
|
} |
|
STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
|
STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
|
|
|
if (!(len & 1)) { |
|
/*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */ |
|
dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride), |
|
SAR(ADD3(s1_0, s1_0, two), 2)); |
|
dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT), |
|
SAR(ADD3(s1_1, s1_1, two), 2)); |
|
|
|
/* tmp[len - 2] = s1 + ((dn + dc) >> 1); */ |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0, |
|
ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
|
ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
|
|
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0); |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1); |
|
} else { |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0)); |
|
STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
|
ADD(s1_1, dc_1)); |
|
} |
|
|
|
opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
|
} |
|
|
|
#undef VREG |
|
#undef LOAD_CST |
|
#undef LOADU |
|
#undef LOAD |
|
#undef STORE |
|
#undef STOREU |
|
#undef ADD |
|
#undef ADD3 |
|
#undef SUB |
|
#undef SAR |
|
|
|
#endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */ |
|
|
|
#if !defined(STANDARD_SLOW_VERSION) |
|
/** Vertical inverse 5x3 wavelet transform for one column, when top-most |
|
* pixel is on even coordinate */ |
|
static void opj_idwt3_v_cas0(OPJ_INT32* tmp, |
|
const OPJ_INT32 sn, |
|
const OPJ_INT32 len, |
|
OPJ_INT32* tiledp_col, |
|
const OPJ_SIZE_T stride) |
|
{ |
|
OPJ_INT32 i, j; |
|
OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
|
|
|
assert(len > 1); |
|
|
|
/* Performs lifting in one single iteration. Saves memory */ |
|
/* accesses and explicit interleaving. */ |
|
|
|
s1n = tiledp_col[0]; |
|
d1n = tiledp_col[(OPJ_SIZE_T)sn * stride]; |
|
s0n = s1n - ((d1n + 1) >> 1); |
|
|
|
for (i = 0, j = 0; i < (len - 3); i += 2, j++) { |
|
d1c = d1n; |
|
s0c = s0n; |
|
|
|
s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride]; |
|
d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride]; |
|
|
|
s0n = opj_int_sub_no_overflow(s1n, |
|
opj_int_add_no_overflow(opj_int_add_no_overflow(d1c, d1n), 2) >> 2); |
|
|
|
tmp[i ] = s0c; |
|
tmp[i + 1] = opj_int_add_no_overflow(d1c, opj_int_add_no_overflow(s0c, |
|
s0n) >> 1); |
|
} |
|
|
|
tmp[i] = s0n; |
|
|
|
if (len & 1) { |
|
tmp[len - 1] = |
|
tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] - |
|
((d1n + 1) >> 1); |
|
tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
|
} else { |
|
tmp[len - 1] = d1n + s0n; |
|
} |
|
|
|
for (i = 0; i < len; ++i) { |
|
tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
|
} |
|
} |
|
|
|
|
|
/** Vertical inverse 5x3 wavelet transform for one column, when top-most |
|
* pixel is on odd coordinate */ |
|
static void opj_idwt3_v_cas1(OPJ_INT32* tmp, |
|
const OPJ_INT32 sn, |
|
const OPJ_INT32 len, |
|
OPJ_INT32* tiledp_col, |
|
const OPJ_SIZE_T stride) |
|
{ |
|
OPJ_INT32 i, j; |
|
OPJ_INT32 s1, s2, dc, dn; |
|
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
|
const OPJ_INT32* in_odd = &tiledp_col[0]; |
|
|
|
assert(len > 2); |
|
|
|
/* Performs lifting in one single iteration. Saves memory */ |
|
/* accesses and explicit interleaving. */ |
|
|
|
s1 = in_even[stride]; |
|
dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
|
tmp[0] = in_even[0] + dc; |
|
for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
|
|
|
s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride]; |
|
|
|
dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2); |
|
tmp[i ] = dc; |
|
tmp[i + 1] = s1 + ((dn + dc) >> 1); |
|
|
|
dc = dn; |
|
s1 = s2; |
|
} |
|
tmp[i] = dc; |
|
if (!(len & 1)) { |
|
dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1); |
|
tmp[len - 2] = s1 + ((dn + dc) >> 1); |
|
tmp[len - 1] = dn; |
|
} else { |
|
tmp[len - 1] = s1 + dc; |
|
} |
|
|
|
for (i = 0; i < len; ++i) { |
|
tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
|
} |
|
} |
|
#endif /* !defined(STANDARD_SLOW_VERSION) */ |
|
|
|
/* <summary> */ |
|
/* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */ |
|
/* </summary> */ |
|
/* Performs interleave, inverse wavelet transform and copy back to buffer */ |
|
static void opj_idwt53_v(const opj_dwt_t *dwt, |
|
OPJ_INT32* tiledp_col, |
|
OPJ_SIZE_T stride, |
|
OPJ_INT32 nb_cols) |
|
{ |
|
#ifdef STANDARD_SLOW_VERSION |
|
/* For documentation purpose */ |
|
OPJ_INT32 k, c; |
|
for (c = 0; c < nb_cols; c ++) { |
|
opj_dwt_interleave_v(dwt, tiledp_col + c, stride); |
|
opj_dwt_decode_1(dwt); |
|
for (k = 0; k < dwt->sn + dwt->dn; ++k) { |
|
tiledp_col[c + k * stride] = dwt->mem[k]; |
|
} |
|
} |
|
#else |
|
const OPJ_INT32 sn = dwt->sn; |
|
const OPJ_INT32 len = sn + dwt->dn; |
|
if (dwt->cas == 0) { |
|
/* If len == 1, unmodified value */ |
|
|
|
#if (defined(__SSE2__) || defined(__AVX2__)) |
|
if (len > 1 && nb_cols == PARALLEL_COLS_53) { |
|
/* Same as below general case, except that thanks to SSE2/AVX2 */ |
|
/* we can efficiently process 8/16 columns in parallel */ |
|
opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
|
return; |
|
} |
|
#endif |
|
if (len > 1) { |
|
OPJ_INT32 c; |
|
for (c = 0; c < nb_cols; c++, tiledp_col++) { |
|
opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride); |
|
} |
|
return; |
|
} |
|
} else { |
|
if (len == 1) { |
|
OPJ_INT32 c; |
|
for (c = 0; c < nb_cols; c++, tiledp_col++) { |
|
tiledp_col[0] /= 2; |
|
} |
|
return; |
|
} |
|
|
|
if (len == 2) { |
|
OPJ_INT32 c; |
|
OPJ_INT32* out = dwt->mem; |
|
for (c = 0; c < nb_cols; c++, tiledp_col++) { |
|
OPJ_INT32 i; |
|
const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
|
const OPJ_INT32* in_odd = &tiledp_col[0]; |
|
|
|
out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
|
out[0] = in_even[0] + out[1]; |
|
|
|
for (i = 0; i < len; ++i) { |
|
tiledp_col[(OPJ_SIZE_T)i * stride] = out[i]; |
|
} |
|
} |
|
|
|
return; |
|
} |
|
|
|
#if (defined(__SSE2__) || defined(__AVX2__)) |
|
if (len > 2 && nb_cols == PARALLEL_COLS_53) { |
|
/* Same as below general case, except that thanks to SSE2/AVX2 */ |
|
/* we can efficiently process 8/16 columns in parallel */ |
|
opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
|
return; |
|
} |
|
#endif |
|
if (len > 2) { |
|
OPJ_INT32 c; |
|
for (c = 0; c < nb_cols; c++, tiledp_col++) { |
|
opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride); |
|
} |
|
return; |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
#if 0 |
|
static void opj_dwt_encode_step1(OPJ_FLOAT32* fw, |
|
OPJ_UINT32 end, |
|
const OPJ_FLOAT32 c) |
|
{ |
|
OPJ_UINT32 i = 0; |
|
for (; i < end; ++i) { |
|
fw[0] *= c; |
|
fw += 2; |
|
} |
|
} |
|
#else |
|
static void opj_dwt_encode_step1_combined(OPJ_FLOAT32* fw, |
|
OPJ_UINT32 iters_c1, |
|
OPJ_UINT32 iters_c2, |
|
const OPJ_FLOAT32 c1, |
|
const OPJ_FLOAT32 c2) |
|
{ |
|
OPJ_UINT32 i = 0; |
|
const OPJ_UINT32 iters_common = opj_uint_min(iters_c1, iters_c2); |
|
assert((((OPJ_SIZE_T)fw) & 0xf) == 0); |
|
assert(opj_int_abs((OPJ_INT32)iters_c1 - (OPJ_INT32)iters_c2) <= 1); |
|
for (; i + 3 < iters_common; i += 4) { |
|
#ifdef __SSE__ |
|
const __m128 vcst = _mm_set_ps(c2, c1, c2, c1); |
|
*(__m128*)fw = _mm_mul_ps(*(__m128*)fw, vcst); |
|
*(__m128*)(fw + 4) = _mm_mul_ps(*(__m128*)(fw + 4), vcst); |
|
#else |
|
fw[0] *= c1; |
|
fw[1] *= c2; |
|
fw[2] *= c1; |
|
fw[3] *= c2; |
|
fw[4] *= c1; |
|
fw[5] *= c2; |
|
fw[6] *= c1; |
|
fw[7] *= c2; |
|
#endif |
|
fw += 8; |
|
} |
|
for (; i < iters_common; i++) { |
|
fw[0] *= c1; |
|
fw[1] *= c2; |
|
fw += 2; |
|
} |
|
if (i < iters_c1) { |
|
fw[0] *= c1; |
|
} else if (i < iters_c2) { |
|
fw[1] *= c2; |
|
} |
|
} |
|
|
|
#endif |
|
|
|
static void opj_dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw, |
|
OPJ_UINT32 end, |
|
OPJ_UINT32 m, |
|
OPJ_FLOAT32 c) |
|
{ |
|
OPJ_UINT32 i; |
|
OPJ_UINT32 imax = opj_uint_min(end, m); |
|
if (imax > 0) { |
|
fw[-1] += (fl[0] + fw[0]) * c; |
|
fw += 2; |
|
i = 1; |
|
for (; i + 3 < imax; i += 4) { |
|
fw[-1] += (fw[-2] + fw[0]) * c; |
|
fw[1] += (fw[0] + fw[2]) * c; |
|
fw[3] += (fw[2] + fw[4]) * c; |
|
fw[5] += (fw[4] + fw[6]) * c; |
|
fw += 8; |
|
} |
|
for (; i < imax; ++i) { |
|
fw[-1] += (fw[-2] + fw[0]) * c; |
|
fw += 2; |
|
} |
|
} |
|
if (m < end) { |
|
assert(m + 1 == end); |
|
fw[-1] += (2 * fw[-2]) * c; |
|
} |
|
} |
|
|
|
static void opj_dwt_encode_1_real(void *aIn, OPJ_INT32 dn, OPJ_INT32 sn, |
|
OPJ_INT32 cas) |
|
{ |
|
OPJ_FLOAT32* w = (OPJ_FLOAT32*)aIn; |
|
OPJ_INT32 a, b; |
|
assert(dn + sn > 1); |
|
if (cas == 0) { |
|
a = 0; |
|
b = 1; |
|
} else { |
|
a = 1; |
|
b = 0; |
|
} |
|
opj_dwt_encode_step2(w + a, w + b + 1, |
|
(OPJ_UINT32)dn, |
|
(OPJ_UINT32)opj_int_min(dn, sn - b), |
|
opj_dwt_alpha); |
|
opj_dwt_encode_step2(w + b, w + a + 1, |
|
(OPJ_UINT32)sn, |
|
(OPJ_UINT32)opj_int_min(sn, dn - a), |
|
opj_dwt_beta); |
|
opj_dwt_encode_step2(w + a, w + b + 1, |
|
(OPJ_UINT32)dn, |
|
(OPJ_UINT32)opj_int_min(dn, sn - b), |
|
opj_dwt_gamma); |
|
opj_dwt_encode_step2(w + b, w + a + 1, |
|
(OPJ_UINT32)sn, |
|
(OPJ_UINT32)opj_int_min(sn, dn - a), |
|
opj_dwt_delta); |
|
#if 0 |
|
opj_dwt_encode_step1(w + b, (OPJ_UINT32)dn, |
|
opj_K); |
|
opj_dwt_encode_step1(w + a, (OPJ_UINT32)sn, |
|
opj_invK); |
|
#else |
|
if (a == 0) { |
|
opj_dwt_encode_step1_combined(w, |
|
(OPJ_UINT32)sn, |
|
(OPJ_UINT32)dn, |
|
opj_invK, |
|
opj_K); |
|
} else { |
|
opj_dwt_encode_step1_combined(w, |
|
(OPJ_UINT32)dn, |
|
(OPJ_UINT32)sn, |
|
opj_K, |
|
opj_invK); |
|
} |
|
#endif |
|
} |
|
|
|
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
|
opj_stepsize_t *bandno_stepsize) |
|
{ |
|
OPJ_INT32 p, n; |
|
p = opj_int_floorlog2(stepsize) - 13; |
|
n = 11 - opj_int_floorlog2(stepsize); |
|
bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; |
|
bandno_stepsize->expn = numbps - p; |
|
} |
|
|
|
/* |
|
========================================================== |
|
DWT interface |
|
========================================================== |
|
*/ |
|
|
|
/** Process one line for the horizontal pass of the 5x3 forward transform */ |
|
static |
|
void opj_dwt_encode_and_deinterleave_h_one_row(void* rowIn, |
|
void* tmpIn, |
|
OPJ_UINT32 width, |
|
OPJ_BOOL even) |
|
{ |
|
OPJ_INT32* OPJ_RESTRICT row = (OPJ_INT32*)rowIn; |
|
OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32*)tmpIn; |
|
const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1); |
|
const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn); |
|
|
|
if (even) { |
|
if (width > 1) { |
|
OPJ_INT32 i; |
|
for (i = 0; i < sn - 1; i++) { |
|
tmp[sn + i] = row[2 * i + 1] - ((row[(i) * 2] + row[(i + 1) * 2]) >> 1); |
|
} |
|
if ((width % 2) == 0) { |
|
tmp[sn + i] = row[2 * i + 1] - row[(i) * 2]; |
|
} |
|
row[0] += (tmp[sn] + tmp[sn] + 2) >> 2; |
|
for (i = 1; i < dn; i++) { |
|
row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + i] + 2) >> 2); |
|
} |
|
if ((width % 2) == 1) { |
|
row[i] = row[2 * i] + ((tmp[sn + (i - 1)] + tmp[sn + (i - 1)] + 2) >> 2); |
|
} |
|
memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32)); |
|
} |
|
} else { |
|
if (width == 1) { |
|
row[0] *= 2; |
|
} else { |
|
OPJ_INT32 i; |
|
tmp[sn + 0] = row[0] - row[1]; |
|
for (i = 1; i < sn; i++) { |
|
tmp[sn + i] = row[2 * i] - ((row[2 * i + 1] + row[2 * (i - 1) + 1]) >> 1); |
|
} |
|
if ((width % 2) == 1) { |
|
tmp[sn + i] = row[2 * i] - row[2 * (i - 1) + 1]; |
|
} |
|
|
|
for (i = 0; i < dn - 1; i++) { |
|
row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i + 1] + 2) >> 2); |
|
} |
|
if ((width % 2) == 0) { |
|
row[i] = row[2 * i + 1] + ((tmp[sn + i] + tmp[sn + i] + 2) >> 2); |
|
} |
|
memcpy(row + sn, tmp + sn, (OPJ_SIZE_T)dn * sizeof(OPJ_INT32)); |
|
} |
|
} |
|
} |
|
|
|
/** Process one line for the horizontal pass of the 9x7 forward transform */ |
|
static |
|
void opj_dwt_encode_and_deinterleave_h_one_row_real(void* rowIn, |
|
void* tmpIn, |
|
OPJ_UINT32 width, |
|
OPJ_BOOL even) |
|
{ |
|
OPJ_FLOAT32* OPJ_RESTRICT row = (OPJ_FLOAT32*)rowIn; |
|
OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32*)tmpIn; |
|
const OPJ_INT32 sn = (OPJ_INT32)((width + (even ? 1 : 0)) >> 1); |
|
const OPJ_INT32 dn = (OPJ_INT32)(width - (OPJ_UINT32)sn); |
|
if (width == 1) { |
|
return; |
|
} |
|
memcpy(tmp, row, width * sizeof(OPJ_FLOAT32)); |
|
opj_dwt_encode_1_real(tmp, dn, sn, even ? 0 : 1); |
|
opj_dwt_deinterleave_h((OPJ_INT32 * OPJ_RESTRICT)tmp, |
|
(OPJ_INT32 * OPJ_RESTRICT)row, |
|
dn, sn, even ? 0 : 1); |
|
} |
|
|
|
typedef struct { |
|
opj_dwt_t h; |
|
OPJ_UINT32 rw; /* Width of the resolution to process */ |
|
OPJ_UINT32 w; /* Width of tiledp */ |
|
OPJ_INT32 * OPJ_RESTRICT tiledp; |
|
OPJ_UINT32 min_j; |
|
OPJ_UINT32 max_j; |
|
opj_encode_and_deinterleave_h_one_row_fnptr_type p_function; |
|
} opj_dwt_encode_h_job_t; |
|
|
|
static void opj_dwt_encode_h_func(void* user_data, opj_tls_t* tls) |
|
{ |
|
OPJ_UINT32 j; |
|
opj_dwt_encode_h_job_t* job; |
|
(void)tls; |
|
|
|
job = (opj_dwt_encode_h_job_t*)user_data; |
|
for (j = job->min_j; j < job->max_j; j++) { |
|
OPJ_INT32* OPJ_RESTRICT aj = job->tiledp + j * job->w; |
|
(*job->p_function)(aj, job->h.mem, job->rw, |
|
job->h.cas == 0 ? OPJ_TRUE : OPJ_FALSE); |
|
} |
|
|
|
opj_aligned_free(job->h.mem); |
|
opj_free(job); |
|
} |
|
|
|
typedef struct { |
|
opj_dwt_t v; |
|
OPJ_UINT32 rh; |
|
OPJ_UINT32 w; |
|
OPJ_INT32 * OPJ_RESTRICT tiledp; |
|
OPJ_UINT32 min_j; |
|
OPJ_UINT32 max_j; |
|
opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v; |
|
} opj_dwt_encode_v_job_t; |
|
|
|
static void opj_dwt_encode_v_func(void* user_data, opj_tls_t* tls) |
|
{ |
|
OPJ_UINT32 j; |
|
opj_dwt_encode_v_job_t* job; |
|
(void)tls; |
|
|
|
job = (opj_dwt_encode_v_job_t*)user_data; |
|
for (j = job->min_j; j + NB_ELTS_V8 - 1 < job->max_j; j += NB_ELTS_V8) { |
|
(*job->p_encode_and_deinterleave_v)(job->tiledp + j, |
|
job->v.mem, |
|
job->rh, |
|
job->v.cas == 0, |
|
job->w, |
|
NB_ELTS_V8); |
|
} |
|
if (j < job->max_j) { |
|
(*job->p_encode_and_deinterleave_v)(job->tiledp + j, |
|
job->v.mem, |
|
job->rh, |
|
job->v.cas == 0, |
|
job->w, |
|
job->max_j - j); |
|
} |
|
|
|
opj_aligned_free(job->v.mem); |
|
opj_free(job); |
|
} |
|
|
|
/** Fetch up to cols <= NB_ELTS_V8 for each line, and put them in tmpOut */ |
|
/* that has a NB_ELTS_V8 interleave factor. */ |
|
static void opj_dwt_fetch_cols_vertical_pass(const void *arrayIn, |
|
void *tmpOut, |
|
OPJ_UINT32 height, |
|
OPJ_UINT32 stride_width, |
|
OPJ_UINT32 cols) |
|
{ |
|
const OPJ_INT32* OPJ_RESTRICT array = (const OPJ_INT32 * OPJ_RESTRICT)arrayIn; |
|
OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpOut; |
|
if (cols == NB_ELTS_V8) { |
|
OPJ_UINT32 k; |
|
for (k = 0; k < height; ++k) { |
|
memcpy(tmp + NB_ELTS_V8 * k, |
|
array + k * stride_width, |
|
NB_ELTS_V8 * sizeof(OPJ_INT32)); |
|
} |
|
} else { |
|
OPJ_UINT32 k; |
|
for (k = 0; k < height; ++k) { |
|
OPJ_UINT32 c; |
|
for (c = 0; c < cols; c++) { |
|
tmp[NB_ELTS_V8 * k + c] = array[c + k * stride_width]; |
|
} |
|
for (; c < NB_ELTS_V8; c++) { |
|
tmp[NB_ELTS_V8 * k + c] = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Deinterleave result of forward transform, where cols <= NB_ELTS_V8 */ |
|
/* and src contains NB_ELTS_V8 consecutive values for up to NB_ELTS_V8 */ |
|
/* columns. */ |
|
static INLINE void opj_dwt_deinterleave_v_cols( |
|
const OPJ_INT32 * OPJ_RESTRICT src, |
|
OPJ_INT32 * OPJ_RESTRICT dst, |
|
OPJ_INT32 dn, |
|
OPJ_INT32 sn, |
|
OPJ_UINT32 stride_width, |
|
OPJ_INT32 cas, |
|
OPJ_UINT32 cols) |
|
{ |
|
OPJ_INT32 k; |
|
OPJ_INT32 i = sn; |
|
OPJ_INT32 * OPJ_RESTRICT l_dest = dst; |
|
const OPJ_INT32 * OPJ_RESTRICT l_src = src + cas * NB_ELTS_V8; |
|
OPJ_UINT32 c; |
|
|
|
for (k = 0; k < 2; k++) { |
|
while (i--) { |
|
if (cols == NB_ELTS_V8) { |
|
memcpy(l_dest, l_src, NB_ELTS_V8 * sizeof(OPJ_INT32)); |
|
} else { |
|
c = 0; |
|
switch (cols) { |
|
case 7: |
|
l_dest[c] = l_src[c]; |
|
c++; /* fallthru */ |
|
case 6: |
|
l_dest[c] = l_src[c]; |
|
c++; /* fallthru */ |
|
case 5: |
|
l_dest[c] = l_src[c]; |
|
c++; /* fallthru */ |
|
case 4: |
|
l_dest[c] = l_src[c]; |
|
c++; /* fallthru */ |
|
case 3: |
|
l_dest[c] = l_src[c]; |
|
c++; /* fallthru */ |
|
case 2: |
|
l_dest[c] = l_src[c]; |
|
c++; /* fallthru */ |
|
default: |
|
l_dest[c] = l_src[c]; |
|
break; |
|
} |
|
} |
|
l_dest += stride_width; |
|
l_src += 2 * NB_ELTS_V8; |
|
} |
|
|
|
l_dest = dst + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)stride_width; |
|
l_src = src + (1 - cas) * NB_ELTS_V8; |
|
i = dn; |
|
} |
|
} |
|
|
|
|
|
/* Forward 5-3 transform, for the vertical pass, processing cols columns */ |
|
/* where cols <= NB_ELTS_V8 */ |
|
static void opj_dwt_encode_and_deinterleave_v( |
|
void *arrayIn, |
|
void *tmpIn, |
|
OPJ_UINT32 height, |
|
OPJ_BOOL even, |
|
OPJ_UINT32 stride_width, |
|
OPJ_UINT32 cols) |
|
{ |
|
OPJ_INT32* OPJ_RESTRICT array = (OPJ_INT32 * OPJ_RESTRICT)arrayIn; |
|
OPJ_INT32* OPJ_RESTRICT tmp = (OPJ_INT32 * OPJ_RESTRICT)tmpIn; |
|
const OPJ_UINT32 sn = (height + (even ? 1 : 0)) >> 1; |
|
const OPJ_UINT32 dn = height - sn; |
|
|
|
opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols); |
|
|
|
#define OPJ_Sc(i) tmp[(i)*2* NB_ELTS_V8 + c] |
|
#define OPJ_Dc(i) tmp[((1+(i)*2))* NB_ELTS_V8 + c] |
|
|
|
#ifdef __SSE2__ |
|
if (height == 1) { |
|
if (!even) { |
|
OPJ_UINT32 c; |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
tmp[c] *= 2; |
|
} |
|
} |
|
} else if (even) { |
|
OPJ_UINT32 c; |
|
OPJ_UINT32 i; |
|
i = 0; |
|
if (i + 1 < sn) { |
|
__m128i xmm_Si_0 = *(const __m128i*)(tmp + 4 * 0); |
|
__m128i xmm_Si_1 = *(const __m128i*)(tmp + 4 * 1); |
|
for (; i + 1 < sn; i++) { |
|
__m128i xmm_Sip1_0 = *(const __m128i*)(tmp + |
|
(i + 1) * 2 * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Sip1_1 = *(const __m128i*)(tmp + |
|
(i + 1) * 2 * NB_ELTS_V8 + 4 * 1); |
|
__m128i xmm_Di_0 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Di_1 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
|
xmm_Di_0 = _mm_sub_epi32(xmm_Di_0, |
|
_mm_srai_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), 1)); |
|
xmm_Di_1 = _mm_sub_epi32(xmm_Di_1, |
|
_mm_srai_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), 1)); |
|
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0; |
|
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1; |
|
xmm_Si_0 = xmm_Sip1_0; |
|
xmm_Si_1 = xmm_Sip1_1; |
|
} |
|
} |
|
if (((height) % 2) == 0) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Dc(i) -= OPJ_Sc(i); |
|
} |
|
} |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2; |
|
} |
|
i = 1; |
|
if (i < dn) { |
|
__m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 + |
|
(i - 1) * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 + |
|
(i - 1) * 2) * NB_ELTS_V8 + 4 * 1); |
|
const __m128i xmm_two = _mm_set1_epi32(2); |
|
for (; i < dn; i++) { |
|
__m128i xmm_Di_0 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Di_1 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
|
__m128i xmm_Si_0 = *(const __m128i*)(tmp + |
|
(i * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Si_1 = *(const __m128i*)(tmp + |
|
(i * 2) * NB_ELTS_V8 + 4 * 1); |
|
xmm_Si_0 = _mm_add_epi32(xmm_Si_0, |
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_0, xmm_Di_0), xmm_two), 2)); |
|
xmm_Si_1 = _mm_add_epi32(xmm_Si_1, |
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Dim1_1, xmm_Di_1), xmm_two), 2)); |
|
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0; |
|
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1; |
|
xmm_Dim1_0 = xmm_Di_0; |
|
xmm_Dim1_1 = xmm_Di_1; |
|
} |
|
} |
|
if (((height) % 2) == 1) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2; |
|
} |
|
} |
|
} else { |
|
OPJ_UINT32 c; |
|
OPJ_UINT32 i; |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(0) -= OPJ_Dc(0); |
|
} |
|
i = 1; |
|
if (i < sn) { |
|
__m128i xmm_Dim1_0 = *(const __m128i*)(tmp + (1 + |
|
(i - 1) * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Dim1_1 = *(const __m128i*)(tmp + (1 + |
|
(i - 1) * 2) * NB_ELTS_V8 + 4 * 1); |
|
for (; i < sn; i++) { |
|
__m128i xmm_Di_0 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Di_1 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
|
__m128i xmm_Si_0 = *(const __m128i*)(tmp + |
|
(i * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Si_1 = *(const __m128i*)(tmp + |
|
(i * 2) * NB_ELTS_V8 + 4 * 1); |
|
xmm_Si_0 = _mm_sub_epi32(xmm_Si_0, |
|
_mm_srai_epi32(_mm_add_epi32(xmm_Di_0, xmm_Dim1_0), 1)); |
|
xmm_Si_1 = _mm_sub_epi32(xmm_Si_1, |
|
_mm_srai_epi32(_mm_add_epi32(xmm_Di_1, xmm_Dim1_1), 1)); |
|
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Si_0; |
|
*(__m128i*)(tmp + (i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Si_1; |
|
xmm_Dim1_0 = xmm_Di_0; |
|
xmm_Dim1_1 = xmm_Di_1; |
|
} |
|
} |
|
if (((height) % 2) == 1) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(i) -= OPJ_Dc(i - 1); |
|
} |
|
} |
|
i = 0; |
|
if (i + 1 < dn) { |
|
__m128i xmm_Si_0 = *((const __m128i*)(tmp + 4 * 0)); |
|
__m128i xmm_Si_1 = *((const __m128i*)(tmp + 4 * 1)); |
|
const __m128i xmm_two = _mm_set1_epi32(2); |
|
for (; i + 1 < dn; i++) { |
|
__m128i xmm_Sip1_0 = *(const __m128i*)(tmp + |
|
(i + 1) * 2 * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Sip1_1 = *(const __m128i*)(tmp + |
|
(i + 1) * 2 * NB_ELTS_V8 + 4 * 1); |
|
__m128i xmm_Di_0 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 0); |
|
__m128i xmm_Di_1 = *(const __m128i*)(tmp + |
|
(1 + i * 2) * NB_ELTS_V8 + 4 * 1); |
|
xmm_Di_0 = _mm_add_epi32(xmm_Di_0, |
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_0, xmm_Sip1_0), xmm_two), 2)); |
|
xmm_Di_1 = _mm_add_epi32(xmm_Di_1, |
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(xmm_Si_1, xmm_Sip1_1), xmm_two), 2)); |
|
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 0) = xmm_Di_0; |
|
*(__m128i*)(tmp + (1 + i * 2) * NB_ELTS_V8 + 4 * 1) = xmm_Di_1; |
|
xmm_Si_0 = xmm_Sip1_0; |
|
xmm_Si_1 = xmm_Sip1_1; |
|
} |
|
} |
|
if (((height) % 2) == 0) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2; |
|
} |
|
} |
|
} |
|
#else |
|
if (even) { |
|
OPJ_UINT32 c; |
|
if (height > 1) { |
|
OPJ_UINT32 i; |
|
for (i = 0; i + 1 < sn; i++) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Dc(i) -= (OPJ_Sc(i) + OPJ_Sc(i + 1)) >> 1; |
|
} |
|
} |
|
if (((height) % 2) == 0) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Dc(i) -= OPJ_Sc(i); |
|
} |
|
} |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(0) += (OPJ_Dc(0) + OPJ_Dc(0) + 2) >> 2; |
|
} |
|
for (i = 1; i < dn; i++) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i) + 2) >> 2; |
|
} |
|
} |
|
if (((height) % 2) == 1) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(i) += (OPJ_Dc(i - 1) + OPJ_Dc(i - 1) + 2) >> 2; |
|
} |
|
} |
|
} |
|
} else { |
|
OPJ_UINT32 c; |
|
if (height == 1) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(0) *= 2; |
|
} |
|
} else { |
|
OPJ_UINT32 i; |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(0) -= OPJ_Dc(0); |
|
} |
|
for (i = 1; i < sn; i++) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(i) -= (OPJ_Dc(i) + OPJ_Dc(i - 1)) >> 1; |
|
} |
|
} |
|
if (((height) % 2) == 1) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Sc(i) -= OPJ_Dc(i - 1); |
|
} |
|
} |
|
for (i = 0; i + 1 < dn; i++) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i + 1) + 2) >> 2; |
|
} |
|
} |
|
if (((height) % 2) == 0) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
OPJ_Dc(i) += (OPJ_Sc(i) + OPJ_Sc(i) + 2) >> 2; |
|
} |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
if (cols == NB_ELTS_V8) { |
|
opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn, |
|
stride_width, even ? 0 : 1, NB_ELTS_V8); |
|
} else { |
|
opj_dwt_deinterleave_v_cols(tmp, array, (OPJ_INT32)dn, (OPJ_INT32)sn, |
|
stride_width, even ? 0 : 1, cols); |
|
} |
|
} |
|
|
|
static void opj_v8dwt_encode_step1(OPJ_FLOAT32* fw, |
|
OPJ_UINT32 end, |
|
const OPJ_FLOAT32 cst) |
|
{ |
|
OPJ_UINT32 i; |
|
#ifdef __SSE__ |
|
__m128* vw = (__m128*) fw; |
|
const __m128 vcst = _mm_set1_ps(cst); |
|
for (i = 0; i < end; ++i) { |
|
vw[0] = _mm_mul_ps(vw[0], vcst); |
|
vw[1] = _mm_mul_ps(vw[1], vcst); |
|
vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
|
} |
|
#else |
|
OPJ_UINT32 c; |
|
for (i = 0; i < end; ++i) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
fw[i * 2 * NB_ELTS_V8 + c] *= cst; |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
static void opj_v8dwt_encode_step2(OPJ_FLOAT32* fl, OPJ_FLOAT32* fw, |
|
OPJ_UINT32 end, |
|
OPJ_UINT32 m, |
|
OPJ_FLOAT32 cst) |
|
{ |
|
OPJ_UINT32 i; |
|
OPJ_UINT32 imax = opj_uint_min(end, m); |
|
#ifdef __SSE__ |
|
__m128* vw = (__m128*) fw; |
|
__m128 vcst = _mm_set1_ps(cst); |
|
if (imax > 0) { |
|
__m128* vl = (__m128*) fl; |
|
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), vcst)); |
|
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), vcst)); |
|
vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
|
i = 1; |
|
|
|
for (; i < imax; ++i) { |
|
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), vcst)); |
|
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), vcst)); |
|
vw += 2 * (NB_ELTS_V8 * sizeof(OPJ_FLOAT32) / sizeof(__m128)); |
|
} |
|
} |
|
if (m < end) { |
|
assert(m + 1 == end); |
|
vcst = _mm_add_ps(vcst, vcst); |
|
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(vw[-4], vcst)); |
|
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(vw[-3], vcst)); |
|
} |
|
#else |
|
OPJ_INT32 c; |
|
if (imax > 0) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
fw[-1 * NB_ELTS_V8 + c] += (fl[0 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) * |
|
cst; |
|
} |
|
fw += 2 * NB_ELTS_V8; |
|
i = 1; |
|
for (; i < imax; ++i) { |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
fw[-1 * NB_ELTS_V8 + c] += (fw[-2 * NB_ELTS_V8 + c] + fw[0 * NB_ELTS_V8 + c]) * |
|
cst; |
|
} |
|
fw += 2 * NB_ELTS_V8; |
|
} |
|
} |
|
if (m < end) { |
|
assert(m + 1 == end); |
|
for (c = 0; c < NB_ELTS_V8; c++) { |
|
fw[-1 * NB_ELTS_V8 + c] += (2 * fw[-2 * NB_ELTS_V8 + c]) * cst; |
|
} |
|
} |
|
#endif |
|
} |
|
|
|
/* Forward 9-7 transform, for the vertical pass, processing cols columns */ |
|
/* where cols <= NB_ELTS_V8 */ |
|
static void opj_dwt_encode_and_deinterleave_v_real( |
|
void *arrayIn, |
|
void *tmpIn, |
|
OPJ_UINT32 height, |
|
OPJ_BOOL even, |
|
OPJ_UINT32 stride_width, |
|
OPJ_UINT32 cols) |
|
{ |
|
OPJ_FLOAT32* OPJ_RESTRICT array = (OPJ_FLOAT32 * OPJ_RESTRICT)arrayIn; |
|
OPJ_FLOAT32* OPJ_RESTRICT tmp = (OPJ_FLOAT32 * OPJ_RESTRICT)tmpIn; |
|
const OPJ_INT32 sn = (OPJ_INT32)((height + (even ? 1 : 0)) >> 1); |
|
const OPJ_INT32 dn = (OPJ_INT32)(height - (OPJ_UINT32)sn); |
|
OPJ_INT32 a, b; |
|
|
|
if (height == 1) { |
|
return; |
|
} |
|
|
|
opj_dwt_fetch_cols_vertical_pass(arrayIn, tmpIn, height, stride_width, cols); |
|
|
|
if (even) { |
|
a = 0; |
|
b = 1; |
|
} else { |
|
a = 1; |
|
b = 0; |
|
} |
|
opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8, |
|
tmp + (b + 1) * NB_ELTS_V8, |
|
(OPJ_UINT32)dn, |
|
(OPJ_UINT32)opj_int_min(dn, sn - b), |
|
opj_dwt_alpha); |
|
opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8, |
|
tmp + (a + 1) * NB_ELTS_V8, |
|
(OPJ_UINT32)sn, |
|
(OPJ_UINT32)opj_int_min(sn, dn - a), |
|
opj_dwt_beta); |
|
opj_v8dwt_encode_step2(tmp + a * NB_ELTS_V8, |
|
tmp + (b + 1) * NB_ELTS_V8, |
|
(OPJ_UINT32)dn, |
|
(OPJ_UINT32)opj_int_min(dn, sn - b), |
|
opj_dwt_gamma); |
|
opj_v8dwt_encode_step2(tmp + b * NB_ELTS_V8, |
|
tmp + (a + 1) * NB_ELTS_V8, |
|
(OPJ_UINT32)sn, |
|
(OPJ_UINT32)opj_int_min(sn, dn - a), |
|
opj_dwt_delta); |
|
opj_v8dwt_encode_step1(tmp + b * NB_ELTS_V8, (OPJ_UINT32)dn, |
|
opj_K); |
|
opj_v8dwt_encode_step1(tmp + a * NB_ELTS_V8, (OPJ_UINT32)sn, |
|
opj_invK); |
|
|
|
|
|
if (cols == NB_ELTS_V8) { |
|
opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp, |
|
(OPJ_INT32*)array, |
|
(OPJ_INT32)dn, (OPJ_INT32)sn, |
|
stride_width, even ? 0 : 1, NB_ELTS_V8); |
|
} else { |
|
opj_dwt_deinterleave_v_cols((OPJ_INT32*)tmp, |
|
(OPJ_INT32*)array, |
|
(OPJ_INT32)dn, (OPJ_INT32)sn, |
|
stride_width, even ? 0 : 1, cols); |
|
} |
|
} |
|
|
|
|
|
/* <summary> */ |
|
/* Forward 5-3 wavelet transform in 2-D. */ |
|
/* </summary> */ |
|
static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_thread_pool_t* tp, |
|
opj_tcd_tilecomp_t * tilec, |
|
opj_encode_and_deinterleave_v_fnptr_type p_encode_and_deinterleave_v, |
|
opj_encode_and_deinterleave_h_one_row_fnptr_type |
|
p_encode_and_deinterleave_h_one_row) |
|
{ |
|
OPJ_INT32 i; |
|
OPJ_INT32 *bj = 00; |
|
OPJ_UINT32 w; |
|
OPJ_INT32 l; |
|
|
|
OPJ_SIZE_T l_data_size; |
|
|
|
opj_tcd_resolution_t * l_cur_res = 0; |
|
opj_tcd_resolution_t * l_last_res = 0; |
|
const int num_threads = opj_thread_pool_get_thread_count(tp); |
|
OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
|
|
|
w = (OPJ_UINT32)(tilec->x1 - tilec->x0); |
|
l = (OPJ_INT32)tilec->numresolutions - 1; |
|
|
|
l_cur_res = tilec->resolutions + l; |
|
l_last_res = l_cur_res - 1; |
|
|
|
l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions); |
|
/* overflow check */ |
|
if (l_data_size > (SIZE_MAX / (NB_ELTS_V8 * sizeof(OPJ_INT32)))) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
l_data_size *= NB_ELTS_V8 * sizeof(OPJ_INT32); |
|
bj = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
|
/* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */ |
|
/* in that case, so do not error out */ |
|
if (l_data_size != 0 && ! bj) { |
|
return OPJ_FALSE; |
|
} |
|
i = l; |
|
|
|
while (i--) { |
|
OPJ_UINT32 j; |
|
OPJ_UINT32 rw; /* width of the resolution level computed */ |
|
OPJ_UINT32 rh; /* height of the resolution level computed */ |
|
OPJ_UINT32 |
|
rw1; /* width of the resolution level once lower than computed one */ |
|
OPJ_UINT32 |
|
rh1; /* height of the resolution level once lower than computed one */ |
|
OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ |
|
OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ |
|
OPJ_INT32 dn, sn; |
|
|
|
rw = (OPJ_UINT32)(l_cur_res->x1 - l_cur_res->x0); |
|
rh = (OPJ_UINT32)(l_cur_res->y1 - l_cur_res->y0); |
|
rw1 = (OPJ_UINT32)(l_last_res->x1 - l_last_res->x0); |
|
rh1 = (OPJ_UINT32)(l_last_res->y1 - l_last_res->y0); |
|
|
|
cas_row = l_cur_res->x0 & 1; |
|
cas_col = l_cur_res->y0 & 1; |
|
|
|
sn = (OPJ_INT32)rh1; |
|
dn = (OPJ_INT32)(rh - rh1); |
|
|
|
/* Perform vertical pass */ |
|
if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) { |
|
for (j = 0; j + NB_ELTS_V8 - 1 < rw; j += NB_ELTS_V8) { |
|
p_encode_and_deinterleave_v(tiledp + j, |
|
bj, |
|
rh, |
|
cas_col == 0, |
|
w, |
|
NB_ELTS_V8); |
|
} |
|
if (j < rw) { |
|
p_encode_and_deinterleave_v(tiledp + j, |
|
bj, |
|
rh, |
|
cas_col == 0, |
|
w, |
|
rw - j); |
|
} |
|
} else { |
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
|
OPJ_UINT32 step_j; |
|
|
|
if (rw < num_jobs) { |
|
num_jobs = rw; |
|
} |
|
step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
|
|
|
for (j = 0; j < num_jobs; j++) { |
|
opj_dwt_encode_v_job_t* job; |
|
|
|
job = (opj_dwt_encode_v_job_t*) opj_malloc(sizeof(opj_dwt_encode_v_job_t)); |
|
if (!job) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_aligned_free(bj); |
|
return OPJ_FALSE; |
|
} |
|
job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
|
if (!job->v.mem) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_free(job); |
|
opj_aligned_free(bj); |
|
return OPJ_FALSE; |
|
} |
|
job->v.dn = dn; |
|
job->v.sn = sn; |
|
job->v.cas = cas_col; |
|
job->rh = rh; |
|
job->w = w; |
|
job->tiledp = tiledp; |
|
job->min_j = j * step_j; |
|
job->max_j = (j + 1 == num_jobs) ? rw : (j + 1) * step_j; |
|
job->p_encode_and_deinterleave_v = p_encode_and_deinterleave_v; |
|
opj_thread_pool_submit_job(tp, opj_dwt_encode_v_func, job); |
|
} |
|
opj_thread_pool_wait_completion(tp, 0); |
|
} |
|
|
|
sn = (OPJ_INT32)rw1; |
|
dn = (OPJ_INT32)(rw - rw1); |
|
|
|
/* Perform horizontal pass */ |
|
if (num_threads <= 1 || rh <= 1) { |
|
for (j = 0; j < rh; j++) { |
|
OPJ_INT32* OPJ_RESTRICT aj = tiledp + j * w; |
|
(*p_encode_and_deinterleave_h_one_row)(aj, bj, rw, |
|
cas_row == 0 ? OPJ_TRUE : OPJ_FALSE); |
|
} |
|
} else { |
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
|
OPJ_UINT32 step_j; |
|
|
|
if (rh < num_jobs) { |
|
num_jobs = rh; |
|
} |
|
step_j = (rh / num_jobs); |
|
|
|
for (j = 0; j < num_jobs; j++) { |
|
opj_dwt_encode_h_job_t* job; |
|
|
|
job = (opj_dwt_encode_h_job_t*) opj_malloc(sizeof(opj_dwt_encode_h_job_t)); |
|
if (!job) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_aligned_free(bj); |
|
return OPJ_FALSE; |
|
} |
|
job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(l_data_size); |
|
if (!job->h.mem) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_free(job); |
|
opj_aligned_free(bj); |
|
return OPJ_FALSE; |
|
} |
|
job->h.dn = dn; |
|
job->h.sn = sn; |
|
job->h.cas = cas_row; |
|
job->rw = rw; |
|
job->w = w; |
|
job->tiledp = tiledp; |
|
job->min_j = j * step_j; |
|
job->max_j = (j + 1U) * step_j; /* this can overflow */ |
|
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
|
job->max_j = rh; |
|
} |
|
job->p_function = p_encode_and_deinterleave_h_one_row; |
|
opj_thread_pool_submit_job(tp, opj_dwt_encode_h_func, job); |
|
} |
|
opj_thread_pool_wait_completion(tp, 0); |
|
} |
|
|
|
l_cur_res = l_last_res; |
|
|
|
--l_last_res; |
|
} |
|
|
|
opj_aligned_free(bj); |
|
return OPJ_TRUE; |
|
} |
|
|
|
/* Forward 5-3 wavelet transform in 2-D. */ |
|
/* </summary> */ |
|
OPJ_BOOL opj_dwt_encode(opj_tcd_t *p_tcd, |
|
opj_tcd_tilecomp_t * tilec) |
|
{ |
|
return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec, |
|
opj_dwt_encode_and_deinterleave_v, |
|
opj_dwt_encode_and_deinterleave_h_one_row); |
|
} |
|
|
|
/* <summary> */ |
|
/* Inverse 5-3 wavelet transform in 2-D. */ |
|
/* </summary> */ |
|
OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec, |
|
OPJ_UINT32 numres) |
|
{ |
|
if (p_tcd->whole_tile_decoding) { |
|
return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres); |
|
} else { |
|
return opj_dwt_decode_partial_tile(tilec, numres); |
|
} |
|
} |
|
|
|
/* <summary> */ |
|
/* Get norm of 5-3 wavelet. */ |
|
/* </summary> */ |
|
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) |
|
{ |
|
/* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
|
/* but the array should really be extended up to 33 resolution levels */ |
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */ |
|
if (orient == 0 && level >= 10) { |
|
level = 9; |
|
} else if (orient > 0 && level >= 9) { |
|
level = 8; |
|
} |
|
return opj_dwt_norms[orient][level]; |
|
} |
|
|
|
/* <summary> */ |
|
/* Forward 9-7 wavelet transform in 2-D. */ |
|
/* </summary> */ |
|
OPJ_BOOL opj_dwt_encode_real(opj_tcd_t *p_tcd, |
|
opj_tcd_tilecomp_t * tilec) |
|
{ |
|
return opj_dwt_encode_procedure(p_tcd->thread_pool, tilec, |
|
opj_dwt_encode_and_deinterleave_v_real, |
|
opj_dwt_encode_and_deinterleave_h_one_row_real); |
|
} |
|
|
|
/* <summary> */ |
|
/* Get norm of 9-7 wavelet. */ |
|
/* </summary> */ |
|
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) |
|
{ |
|
/* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
|
/* but the array should really be extended up to 33 resolution levels */ |
|
/* See https://github.com/uclouvain/openjpeg/issues/493 */ |
|
if (orient == 0 && level >= 10) { |
|
level = 9; |
|
} else if (orient > 0 && level >= 9) { |
|
level = 8; |
|
} |
|
return opj_dwt_norms_real[orient][level]; |
|
} |
|
|
|
void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) |
|
{ |
|
OPJ_UINT32 numbands, bandno; |
|
numbands = 3 * tccp->numresolutions - 2; |
|
for (bandno = 0; bandno < numbands; bandno++) { |
|
OPJ_FLOAT64 stepsize; |
|
OPJ_UINT32 resno, level, orient, gain; |
|
|
|
resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); |
|
orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); |
|
level = tccp->numresolutions - 1 - resno; |
|
gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || |
|
(orient == 2)) ? 1 : 2)); |
|
if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { |
|
stepsize = 1.0; |
|
} else { |
|
OPJ_FLOAT64 norm = opj_dwt_getnorm_real(level, orient); |
|
stepsize = (1 << (gain)) / norm; |
|
} |
|
opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), |
|
(OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); |
|
} |
|
} |
|
|
|
/* <summary> */ |
|
/* Determine maximum computed resolution level for inverse wavelet transform */ |
|
/* </summary> */ |
|
static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
|
OPJ_UINT32 i) |
|
{ |
|
OPJ_UINT32 mr = 0; |
|
OPJ_UINT32 w; |
|
while (--i) { |
|
++r; |
|
if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) { |
|
mr = w ; |
|
} |
|
if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) { |
|
mr = w ; |
|
} |
|
} |
|
return mr ; |
|
} |
|
|
|
typedef struct { |
|
opj_dwt_t h; |
|
OPJ_UINT32 rw; |
|
OPJ_UINT32 w; |
|
OPJ_INT32 * OPJ_RESTRICT tiledp; |
|
OPJ_UINT32 min_j; |
|
OPJ_UINT32 max_j; |
|
} opj_dwt_decode_h_job_t; |
|
|
|
static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls) |
|
{ |
|
OPJ_UINT32 j; |
|
opj_dwt_decode_h_job_t* job; |
|
(void)tls; |
|
|
|
job = (opj_dwt_decode_h_job_t*)user_data; |
|
for (j = job->min_j; j < job->max_j; j++) { |
|
opj_idwt53_h(&job->h, &job->tiledp[j * job->w]); |
|
} |
|
|
|
opj_aligned_free(job->h.mem); |
|
opj_free(job); |
|
} |
|
|
|
typedef struct { |
|
opj_dwt_t v; |
|
OPJ_UINT32 rh; |
|
OPJ_UINT32 w; |
|
OPJ_INT32 * OPJ_RESTRICT tiledp; |
|
OPJ_UINT32 min_j; |
|
OPJ_UINT32 max_j; |
|
} opj_dwt_decode_v_job_t; |
|
|
|
static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls) |
|
{ |
|
OPJ_UINT32 j; |
|
opj_dwt_decode_v_job_t* job; |
|
(void)tls; |
|
|
|
job = (opj_dwt_decode_v_job_t*)user_data; |
|
for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j; |
|
j += PARALLEL_COLS_53) { |
|
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
|
PARALLEL_COLS_53); |
|
} |
|
if (j < job->max_j) |
|
opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
|
(OPJ_INT32)(job->max_j - j)); |
|
|
|
opj_aligned_free(job->v.mem); |
|
opj_free(job); |
|
} |
|
|
|
|
|
/* <summary> */ |
|
/* Inverse wavelet transform in 2-D. */ |
|
/* </summary> */ |
|
static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
|
opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) |
|
{ |
|
opj_dwt_t h; |
|
opj_dwt_t v; |
|
|
|
opj_tcd_resolution_t* tr = tilec->resolutions; |
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
|
tr->x0); /* width of the resolution level computed */ |
|
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
|
tr->y0); /* height of the resolution level computed */ |
|
|
|
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
|
1].x1 - |
|
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
|
OPJ_SIZE_T h_mem_size; |
|
int num_threads; |
|
|
|
if (numres == 1U) { |
|
return OPJ_TRUE; |
|
} |
|
num_threads = opj_thread_pool_get_thread_count(tp); |
|
h_mem_size = opj_dwt_max_resolution(tr, numres); |
|
/* overflow check */ |
|
if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
/* We need PARALLEL_COLS_53 times the height of the array, */ |
|
/* since for the vertical pass */ |
|
/* we process PARALLEL_COLS_53 columns at a time */ |
|
h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32); |
|
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
|
if (! h.mem) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
|
|
v.mem = h.mem; |
|
|
|
while (--numres) { |
|
OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
|
OPJ_UINT32 j; |
|
|
|
++tr; |
|
h.sn = (OPJ_INT32)rw; |
|
v.sn = (OPJ_INT32)rh; |
|
|
|
rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
|
rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
|
h.cas = tr->x0 % 2; |
|
|
|
if (num_threads <= 1 || rh <= 1) { |
|
for (j = 0; j < rh; ++j) { |
|
opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]); |
|
} |
|
} else { |
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
|
OPJ_UINT32 step_j; |
|
|
|
if (rh < num_jobs) { |
|
num_jobs = rh; |
|
} |
|
step_j = (rh / num_jobs); |
|
|
|
for (j = 0; j < num_jobs; j++) { |
|
opj_dwt_decode_h_job_t* job; |
|
|
|
job = (opj_dwt_decode_h_job_t*) opj_malloc(sizeof(opj_dwt_decode_h_job_t)); |
|
if (!job) { |
|
/* It would be nice to fallback to single thread case, but */ |
|
/* unfortunately some jobs may be launched and have modified */ |
|
/* tiledp, so it is not practical to recover from that error */ |
|
/* FIXME event manager error callback */ |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_aligned_free(h.mem); |
|
return OPJ_FALSE; |
|
} |
|
job->h = h; |
|
job->rw = rw; |
|
job->w = w; |
|
job->tiledp = tiledp; |
|
job->min_j = j * step_j; |
|
job->max_j = (j + 1U) * step_j; /* this can overflow */ |
|
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
|
job->max_j = rh; |
|
} |
|
job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
|
if (!job->h.mem) { |
|
/* FIXME event manager error callback */ |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_free(job); |
|
opj_aligned_free(h.mem); |
|
return OPJ_FALSE; |
|
} |
|
opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job); |
|
} |
|
opj_thread_pool_wait_completion(tp, 0); |
|
} |
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
|
v.cas = tr->y0 % 2; |
|
|
|
if (num_threads <= 1 || rw <= 1) { |
|
for (j = 0; j + PARALLEL_COLS_53 <= rw; |
|
j += PARALLEL_COLS_53) { |
|
opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53); |
|
} |
|
if (j < rw) { |
|
opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j)); |
|
} |
|
} else { |
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
|
OPJ_UINT32 step_j; |
|
|
|
if (rw < num_jobs) { |
|
num_jobs = rw; |
|
} |
|
step_j = (rw / num_jobs); |
|
|
|
for (j = 0; j < num_jobs; j++) { |
|
opj_dwt_decode_v_job_t* job; |
|
|
|
job = (opj_dwt_decode_v_job_t*) opj_malloc(sizeof(opj_dwt_decode_v_job_t)); |
|
if (!job) { |
|
/* It would be nice to fallback to single thread case, but */ |
|
/* unfortunately some jobs may be launched and have modified */ |
|
/* tiledp, so it is not practical to recover from that error */ |
|
/* FIXME event manager error callback */ |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_aligned_free(v.mem); |
|
return OPJ_FALSE; |
|
} |
|
job->v = v; |
|
job->rh = rh; |
|
job->w = w; |
|
job->tiledp = tiledp; |
|
job->min_j = j * step_j; |
|
job->max_j = (j + 1U) * step_j; /* this can overflow */ |
|
if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
|
job->max_j = rw; |
|
} |
|
job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
|
if (!job->v.mem) { |
|
/* FIXME event manager error callback */ |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_free(job); |
|
opj_aligned_free(v.mem); |
|
return OPJ_FALSE; |
|
} |
|
opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job); |
|
} |
|
opj_thread_pool_wait_completion(tp, 0); |
|
} |
|
} |
|
opj_aligned_free(h.mem); |
|
return OPJ_TRUE; |
|
} |
|
|
|
static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest, |
|
OPJ_INT32 cas, |
|
opj_sparse_array_int32_t* sa, |
|
OPJ_UINT32 sa_line, |
|
OPJ_UINT32 sn, |
|
OPJ_UINT32 win_l_x0, |
|
OPJ_UINT32 win_l_x1, |
|
OPJ_UINT32 win_h_x0, |
|
OPJ_UINT32 win_h_x1) |
|
{ |
|
OPJ_BOOL ret; |
|
ret = opj_sparse_array_int32_read(sa, |
|
win_l_x0, sa_line, |
|
win_l_x1, sa_line + 1, |
|
dest + cas + 2 * win_l_x0, |
|
2, 0, OPJ_TRUE); |
|
assert(ret); |
|
ret = opj_sparse_array_int32_read(sa, |
|
sn + win_h_x0, sa_line, |
|
sn + win_h_x1, sa_line + 1, |
|
dest + 1 - cas + 2 * win_h_x0, |
|
2, 0, OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
} |
|
|
|
|
|
static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest, |
|
OPJ_INT32 cas, |
|
opj_sparse_array_int32_t* sa, |
|
OPJ_UINT32 sa_col, |
|
OPJ_UINT32 nb_cols, |
|
OPJ_UINT32 sn, |
|
OPJ_UINT32 win_l_y0, |
|
OPJ_UINT32 win_l_y1, |
|
OPJ_UINT32 win_h_y0, |
|
OPJ_UINT32 win_h_y1) |
|
{ |
|
OPJ_BOOL ret; |
|
ret = opj_sparse_array_int32_read(sa, |
|
sa_col, win_l_y0, |
|
sa_col + nb_cols, win_l_y1, |
|
dest + cas * 4 + 2 * 4 * win_l_y0, |
|
1, 2 * 4, OPJ_TRUE); |
|
assert(ret); |
|
ret = opj_sparse_array_int32_read(sa, |
|
sa_col, sn + win_h_y0, |
|
sa_col + nb_cols, sn + win_h_y1, |
|
dest + (1 - cas) * 4 + 2 * 4 * win_h_y0, |
|
1, 2 * 4, OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
} |
|
|
|
static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
|
OPJ_INT32 cas, |
|
OPJ_INT32 win_l_x0, |
|
OPJ_INT32 win_l_x1, |
|
OPJ_INT32 win_h_x0, |
|
OPJ_INT32 win_h_x1) |
|
{ |
|
OPJ_INT32 i; |
|
|
|
if (!cas) { |
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
|
|
|
/* Naive version is : |
|
for (i = win_l_x0; i < i_max; i++) { |
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
|
} |
|
for (i = win_h_x0; i < win_h_x1; i++) { |
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
|
} |
|
but the compiler doesn't manage to unroll it to avoid bound |
|
checking in OPJ_S_ and OPJ_D_ macros |
|
*/ |
|
|
|
i = win_l_x0; |
|
if (i < win_l_x1) { |
|
OPJ_INT32 i_max; |
|
|
|
/* Left-most case */ |
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
|
i ++; |
|
|
|
i_max = win_l_x1; |
|
if (i_max > dn) { |
|
i_max = dn; |
|
} |
|
for (; i < i_max; i++) { |
|
/* No bound checking */ |
|
OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2; |
|
} |
|
for (; i < win_l_x1; i++) { |
|
/* Right-most case */ |
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
|
} |
|
} |
|
|
|
i = win_h_x0; |
|
if (i < win_h_x1) { |
|
OPJ_INT32 i_max = win_h_x1; |
|
if (i_max >= sn) { |
|
i_max = sn - 1; |
|
} |
|
for (; i < i_max; i++) { |
|
/* No bound checking */ |
|
OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1; |
|
} |
|
for (; i < win_h_x1; i++) { |
|
/* Right-most case */ |
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
|
} |
|
} |
|
} |
|
} else { |
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
|
OPJ_S(0) /= 2; |
|
} else { |
|
for (i = win_l_x0; i < win_l_x1; i++) { |
|
OPJ_D(i) = opj_int_sub_no_overflow(OPJ_D(i), |
|
opj_int_add_no_overflow(opj_int_add_no_overflow(OPJ_SS_(i), OPJ_SS_(i + 1)), |
|
2) >> 2); |
|
} |
|
for (i = win_h_x0; i < win_h_x1; i++) { |
|
OPJ_S(i) = opj_int_add_no_overflow(OPJ_S(i), |
|
opj_int_add_no_overflow(OPJ_DD_(i), OPJ_DD_(i - 1)) >> 1); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off] |
|
#define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off] |
|
#define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off))) |
|
#define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off))) |
|
#define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off))) |
|
#define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off))) |
|
|
|
static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a, |
|
OPJ_UINT32 nb_cols, |
|
OPJ_INT32 dn, OPJ_INT32 sn, |
|
OPJ_INT32 cas, |
|
OPJ_INT32 win_l_x0, |
|
OPJ_INT32 win_l_x1, |
|
OPJ_INT32 win_h_x0, |
|
OPJ_INT32 win_h_x1) |
|
{ |
|
OPJ_INT32 i; |
|
OPJ_UINT32 off; |
|
|
|
(void)nb_cols; |
|
|
|
if (!cas) { |
|
if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
|
|
|
/* Naive version is : |
|
for (i = win_l_x0; i < i_max; i++) { |
|
OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
|
} |
|
for (i = win_h_x0; i < win_h_x1; i++) { |
|
OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
|
} |
|
but the compiler doesn't manage to unroll it to avoid bound |
|
checking in OPJ_S_ and OPJ_D_ macros |
|
*/ |
|
|
|
i = win_l_x0; |
|
if (i < win_l_x1) { |
|
OPJ_INT32 i_max; |
|
|
|
/* Left-most case */ |
|
for (off = 0; off < 4; off++) { |
|
OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
|
} |
|
i ++; |
|
|
|
i_max = win_l_x1; |
|
if (i_max > dn) { |
|
i_max = dn; |
|
} |
|
|
|
#ifdef __SSE2__ |
|
if (i + 1 < i_max) { |
|
const __m128i two = _mm_set1_epi32(2); |
|
__m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8)); |
|
for (; i + 1 < i_max; i += 2) { |
|
/* No bound checking */ |
|
__m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
|
__m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
|
__m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
|
__m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
|
S = _mm_sub_epi32(S, |
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2)); |
|
S1 = _mm_sub_epi32(S1, |
|
_mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2)); |
|
_mm_store_si128((__m128i*)(a + i * 8), S); |
|
_mm_store_si128((__m128i*)(a + (i + 1) * 8), S1); |
|
Dm1 = D1; |
|
} |
|
} |
|
#endif |
|
|
|
for (; i < i_max; i++) { |
|
/* No bound checking */ |
|
for (off = 0; off < 4; off++) { |
|
OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2; |
|
} |
|
} |
|
for (; i < win_l_x1; i++) { |
|
/* Right-most case */ |
|
for (off = 0; off < 4; off++) { |
|
OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
|
} |
|
} |
|
} |
|
|
|
i = win_h_x0; |
|
if (i < win_h_x1) { |
|
OPJ_INT32 i_max = win_h_x1; |
|
if (i_max >= sn) { |
|
i_max = sn - 1; |
|
} |
|
|
|
#ifdef __SSE2__ |
|
if (i + 1 < i_max) { |
|
__m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
|
for (; i + 1 < i_max; i += 2) { |
|
/* No bound checking */ |
|
__m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
|
__m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
|
__m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
|
__m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8)); |
|
D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1)); |
|
D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1)); |
|
_mm_store_si128((__m128i*)(a + 4 + i * 8), D); |
|
_mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1); |
|
S = S2; |
|
} |
|
} |
|
#endif |
|
|
|
for (; i < i_max; i++) { |
|
/* No bound checking */ |
|
for (off = 0; off < 4; off++) { |
|
OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1; |
|
} |
|
} |
|
for (; i < win_h_x1; i++) { |
|
/* Right-most case */ |
|
for (off = 0; off < 4; off++) { |
|
OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1; |
|
} |
|
} |
|
} |
|
} |
|
} else { |
|
if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
|
for (off = 0; off < 4; off++) { |
|
OPJ_S_off(0, off) /= 2; |
|
} |
|
} else { |
|
for (i = win_l_x0; i < win_l_x1; i++) { |
|
for (off = 0; off < 4; off++) { |
|
OPJ_D_off(i, off) = opj_int_sub_no_overflow( |
|
OPJ_D_off(i, off), |
|
opj_int_add_no_overflow( |
|
opj_int_add_no_overflow(OPJ_SS__off(i, off), OPJ_SS__off(i + 1, off)), 2) >> 2); |
|
} |
|
} |
|
for (i = win_h_x0; i < win_h_x1; i++) { |
|
for (off = 0; off < 4; off++) { |
|
OPJ_S_off(i, off) = opj_int_add_no_overflow( |
|
OPJ_S_off(i, off), |
|
opj_int_add_no_overflow(OPJ_DD__off(i, off), OPJ_DD__off(i - 1, off)) >> 1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec, |
|
OPJ_UINT32 resno, |
|
OPJ_UINT32 bandno, |
|
OPJ_UINT32 tcx0, |
|
OPJ_UINT32 tcy0, |
|
OPJ_UINT32 tcx1, |
|
OPJ_UINT32 tcy1, |
|
OPJ_UINT32* tbx0, |
|
OPJ_UINT32* tby0, |
|
OPJ_UINT32* tbx1, |
|
OPJ_UINT32* tby1) |
|
{ |
|
/* Compute number of decomposition for this band. See table F-1 */ |
|
OPJ_UINT32 nb = (resno == 0) ? |
|
tilec->numresolutions - 1 : |
|
tilec->numresolutions - resno; |
|
/* Map above tile-based coordinates to sub-band-based coordinates per */ |
|
/* equation B-15 of the standard */ |
|
OPJ_UINT32 x0b = bandno & 1; |
|
OPJ_UINT32 y0b = bandno >> 1; |
|
if (tbx0) { |
|
*tbx0 = (nb == 0) ? tcx0 : |
|
(tcx0 <= (1U << (nb - 1)) * x0b) ? 0 : |
|
opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb); |
|
} |
|
if (tby0) { |
|
*tby0 = (nb == 0) ? tcy0 : |
|
(tcy0 <= (1U << (nb - 1)) * y0b) ? 0 : |
|
opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb); |
|
} |
|
if (tbx1) { |
|
*tbx1 = (nb == 0) ? tcx1 : |
|
(tcx1 <= (1U << (nb - 1)) * x0b) ? 0 : |
|
opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb); |
|
} |
|
if (tby1) { |
|
*tby1 = (nb == 0) ? tcy1 : |
|
(tcy1 <= (1U << (nb - 1)) * y0b) ? 0 : |
|
opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb); |
|
} |
|
} |
|
|
|
static void opj_dwt_segment_grow(OPJ_UINT32 filter_width, |
|
OPJ_UINT32 max_size, |
|
OPJ_UINT32* start, |
|
OPJ_UINT32* end) |
|
{ |
|
*start = opj_uint_subs(*start, filter_width); |
|
*end = opj_uint_adds(*end, filter_width); |
|
*end = opj_uint_min(*end, max_size); |
|
} |
|
|
|
|
|
static opj_sparse_array_int32_t* opj_dwt_init_sparse_array( |
|
opj_tcd_tilecomp_t* tilec, |
|
OPJ_UINT32 numres) |
|
{ |
|
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
|
OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0); |
|
OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0); |
|
OPJ_UINT32 resno, bandno, precno, cblkno; |
|
opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create( |
|
w, h, opj_uint_min(w, 64), opj_uint_min(h, 64)); |
|
if (sa == NULL) { |
|
return NULL; |
|
} |
|
|
|
for (resno = 0; resno < numres; ++resno) { |
|
opj_tcd_resolution_t* res = &tilec->resolutions[resno]; |
|
|
|
for (bandno = 0; bandno < res->numbands; ++bandno) { |
|
opj_tcd_band_t* band = &res->bands[bandno]; |
|
|
|
for (precno = 0; precno < res->pw * res->ph; ++precno) { |
|
opj_tcd_precinct_t* precinct = &band->precincts[precno]; |
|
for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) { |
|
opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno]; |
|
if (cblk->decoded_data != NULL) { |
|
OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0); |
|
OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0); |
|
OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0); |
|
OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0); |
|
|
|
if (band->bandno & 1) { |
|
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; |
|
x += (OPJ_UINT32)(pres->x1 - pres->x0); |
|
} |
|
if (band->bandno & 2) { |
|
opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; |
|
y += (OPJ_UINT32)(pres->y1 - pres->y0); |
|
} |
|
|
|
if (!opj_sparse_array_int32_write(sa, x, y, |
|
x + cblk_w, y + cblk_h, |
|
cblk->decoded_data, |
|
1, cblk_w, OPJ_TRUE)) { |
|
opj_sparse_array_int32_free(sa); |
|
return NULL; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
return sa; |
|
} |
|
|
|
|
|
static OPJ_BOOL opj_dwt_decode_partial_tile( |
|
opj_tcd_tilecomp_t* tilec, |
|
OPJ_UINT32 numres) |
|
{ |
|
opj_sparse_array_int32_t* sa; |
|
opj_dwt_t h; |
|
opj_dwt_t v; |
|
OPJ_UINT32 resno; |
|
/* This value matches the maximum left/right extension given in tables */ |
|
/* F.2 and F.3 of the standard. */ |
|
const OPJ_UINT32 filter_width = 2U; |
|
|
|
opj_tcd_resolution_t* tr = tilec->resolutions; |
|
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
|
tr->x0); /* width of the resolution level computed */ |
|
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
|
tr->y0); /* height of the resolution level computed */ |
|
|
|
OPJ_SIZE_T h_mem_size; |
|
|
|
/* Compute the intersection of the area of interest, expressed in tile coordinates */ |
|
/* with the tile coordinates */ |
|
OPJ_UINT32 win_tcx0 = tilec->win_x0; |
|
OPJ_UINT32 win_tcy0 = tilec->win_y0; |
|
OPJ_UINT32 win_tcx1 = tilec->win_x1; |
|
OPJ_UINT32 win_tcy1 = tilec->win_y1; |
|
|
|
if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { |
|
return OPJ_TRUE; |
|
} |
|
|
|
sa = opj_dwt_init_sparse_array(tilec, numres); |
|
if (sa == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
|
|
if (numres == 1U) { |
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
|
tilec->data_win, |
|
1, tr_max->win_x1 - tr_max->win_x0, |
|
OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_TRUE; |
|
} |
|
h_mem_size = opj_dwt_max_resolution(tr, numres); |
|
/* overflow check */ |
|
/* in vertical pass, we process 4 columns at a time */ |
|
if (h_mem_size > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_FALSE; |
|
} |
|
|
|
h_mem_size *= 4 * sizeof(OPJ_INT32); |
|
h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
|
if (! h.mem) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_FALSE; |
|
} |
|
|
|
v.mem = h.mem; |
|
|
|
for (resno = 1; resno < numres; resno ++) { |
|
OPJ_UINT32 i, j; |
|
/* Window of interest subband-based coordinates */ |
|
OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; |
|
OPJ_UINT32 win_hl_x0, win_hl_x1; |
|
OPJ_UINT32 win_lh_y0, win_lh_y1; |
|
/* Window of interest tile-resolution-based coordinates */ |
|
OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; |
|
/* Tile-resolution subband-based coordinates */ |
|
OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; |
|
|
|
++tr; |
|
|
|
h.sn = (OPJ_INT32)rw; |
|
v.sn = (OPJ_INT32)rh; |
|
|
|
rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
|
rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
|
h.cas = tr->x0 % 2; |
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
|
v.cas = tr->y0 % 2; |
|
|
|
/* Get the subband coordinates for the window of interest */ |
|
/* LL band */ |
|
opj_dwt_get_band_coordinates(tilec, resno, 0, |
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
|
&win_ll_x0, &win_ll_y0, |
|
&win_ll_x1, &win_ll_y1); |
|
|
|
/* HL band */ |
|
opj_dwt_get_band_coordinates(tilec, resno, 1, |
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
|
&win_hl_x0, NULL, &win_hl_x1, NULL); |
|
|
|
/* LH band */ |
|
opj_dwt_get_band_coordinates(tilec, resno, 2, |
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
|
NULL, &win_lh_y0, NULL, &win_lh_y1); |
|
|
|
/* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ |
|
tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; |
|
tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; |
|
tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; |
|
tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; |
|
|
|
/* Subtract the origin of the bands for this tile, to the subwindow */ |
|
/* of interest band coordinates, so as to get them relative to the */ |
|
/* tile */ |
|
win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); |
|
win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); |
|
win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); |
|
win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); |
|
win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); |
|
win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); |
|
win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); |
|
win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); |
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); |
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); |
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); |
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); |
|
|
|
/* Compute the tile-resolution-based coordinates for the window of interest */ |
|
if (h.cas == 0) { |
|
win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); |
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); |
|
} else { |
|
win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); |
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); |
|
} |
|
|
|
if (v.cas == 0) { |
|
win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); |
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); |
|
} else { |
|
win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); |
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); |
|
} |
|
|
|
for (j = 0; j < rh; ++j) { |
|
if ((j >= win_ll_y0 && j < win_ll_y1) || |
|
(j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) { |
|
|
|
/* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */ |
|
/* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */ |
|
/* on opj_decompress -i ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */ |
|
/* This is less extreme than memsetting the whole buffer to 0 */ |
|
/* although we could potentially do better with better handling of edge conditions */ |
|
if (win_tr_x1 >= 1 && win_tr_x1 < rw) { |
|
h.mem[win_tr_x1 - 1] = 0; |
|
} |
|
if (win_tr_x1 < rw) { |
|
h.mem[win_tr_x1] = 0; |
|
} |
|
|
|
opj_dwt_interleave_partial_h(h.mem, |
|
h.cas, |
|
sa, |
|
j, |
|
(OPJ_UINT32)h.sn, |
|
win_ll_x0, |
|
win_ll_x1, |
|
win_hl_x0, |
|
win_hl_x1); |
|
opj_dwt_decode_partial_1(h.mem, h.dn, h.sn, h.cas, |
|
(OPJ_INT32)win_ll_x0, |
|
(OPJ_INT32)win_ll_x1, |
|
(OPJ_INT32)win_hl_x0, |
|
(OPJ_INT32)win_hl_x1); |
|
if (!opj_sparse_array_int32_write(sa, |
|
win_tr_x0, j, |
|
win_tr_x1, j + 1, |
|
h.mem + win_tr_x0, |
|
1, 0, OPJ_TRUE)) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
opj_aligned_free(h.mem); |
|
return OPJ_FALSE; |
|
} |
|
} |
|
} |
|
|
|
for (i = win_tr_x0; i < win_tr_x1;) { |
|
OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i); |
|
opj_dwt_interleave_partial_v(v.mem, |
|
v.cas, |
|
sa, |
|
i, |
|
nb_cols, |
|
(OPJ_UINT32)v.sn, |
|
win_ll_y0, |
|
win_ll_y1, |
|
win_lh_y0, |
|
win_lh_y1); |
|
opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas, |
|
(OPJ_INT32)win_ll_y0, |
|
(OPJ_INT32)win_ll_y1, |
|
(OPJ_INT32)win_lh_y0, |
|
(OPJ_INT32)win_lh_y1); |
|
if (!opj_sparse_array_int32_write(sa, |
|
i, win_tr_y0, |
|
i + nb_cols, win_tr_y1, |
|
v.mem + 4 * win_tr_y0, |
|
1, 4, OPJ_TRUE)) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
opj_aligned_free(h.mem); |
|
return OPJ_FALSE; |
|
} |
|
|
|
i += nb_cols; |
|
} |
|
} |
|
opj_aligned_free(h.mem); |
|
|
|
{ |
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
|
tilec->data_win, |
|
1, tr_max->win_x1 - tr_max->win_x0, |
|
OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
} |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_TRUE; |
|
} |
|
|
|
static void opj_v8dwt_interleave_h(opj_v8dwt_t* OPJ_RESTRICT dwt, |
|
OPJ_FLOAT32* OPJ_RESTRICT a, |
|
OPJ_UINT32 width, |
|
OPJ_UINT32 remaining_height) |
|
{ |
|
OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas); |
|
OPJ_UINT32 i, k; |
|
OPJ_UINT32 x0 = dwt->win_l_x0; |
|
OPJ_UINT32 x1 = dwt->win_l_x1; |
|
|
|
for (k = 0; k < 2; ++k) { |
|
if (remaining_height >= NB_ELTS_V8 && ((OPJ_SIZE_T) a & 0x0f) == 0 && |
|
((OPJ_SIZE_T) bi & 0x0f) == 0) { |
|
/* Fast code path */ |
|
for (i = x0; i < x1; ++i) { |
|
OPJ_UINT32 j = i; |
|
OPJ_FLOAT32* OPJ_RESTRICT dst = bi + i * 2 * NB_ELTS_V8; |
|
dst[0] = a[j]; |
|
j += width; |
|
dst[1] = a[j]; |
|
j += width; |
|
dst[2] = a[j]; |
|
j += width; |
|
dst[3] = a[j]; |
|
j += width; |
|
dst[4] = a[j]; |
|
j += width; |
|
dst[5] = a[j]; |
|
j += width; |
|
dst[6] = a[j]; |
|
j += width; |
|
dst[7] = a[j]; |
|
} |
|
} else { |
|
/* Slow code path */ |
|
for (i = x0; i < x1; ++i) { |
|
OPJ_UINT32 j = i; |
|
OPJ_FLOAT32* OPJ_RESTRICT dst = bi + i * 2 * NB_ELTS_V8; |
|
dst[0] = a[j]; |
|
j += width; |
|
if (remaining_height == 1) { |
|
continue; |
|
} |
|
dst[1] = a[j]; |
|
j += width; |
|
if (remaining_height == 2) { |
|
continue; |
|
} |
|
dst[2] = a[j]; |
|
j += width; |
|
if (remaining_height == 3) { |
|
continue; |
|
} |
|
dst[3] = a[j]; |
|
j += width; |
|
if (remaining_height == 4) { |
|
continue; |
|
} |
|
dst[4] = a[j]; |
|
j += width; |
|
if (remaining_height == 5) { |
|
continue; |
|
} |
|
dst[5] = a[j]; |
|
j += width; |
|
if (remaining_height == 6) { |
|
continue; |
|
} |
|
dst[6] = a[j]; |
|
j += width; |
|
if (remaining_height == 7) { |
|
continue; |
|
} |
|
dst[7] = a[j]; |
|
} |
|
} |
|
|
|
bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas); |
|
a += dwt->sn; |
|
x0 = dwt->win_h_x0; |
|
x1 = dwt->win_h_x1; |
|
} |
|
} |
|
|
|
static void opj_v8dwt_interleave_partial_h(opj_v8dwt_t* dwt, |
|
opj_sparse_array_int32_t* sa, |
|
OPJ_UINT32 sa_line, |
|
OPJ_UINT32 remaining_height) |
|
{ |
|
OPJ_UINT32 i; |
|
for (i = 0; i < remaining_height; i++) { |
|
OPJ_BOOL ret; |
|
ret = opj_sparse_array_int32_read(sa, |
|
dwt->win_l_x0, sa_line + i, |
|
dwt->win_l_x1, sa_line + i + 1, |
|
/* Nasty cast from float* to int32* */ |
|
(OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i, |
|
2 * NB_ELTS_V8, 0, OPJ_TRUE); |
|
assert(ret); |
|
ret = opj_sparse_array_int32_read(sa, |
|
(OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i, |
|
(OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1, |
|
/* Nasty cast from float* to int32* */ |
|
(OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i, |
|
2 * NB_ELTS_V8, 0, OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
} |
|
} |
|
|
|
static INLINE void opj_v8dwt_interleave_v(opj_v8dwt_t* OPJ_RESTRICT dwt, |
|
OPJ_FLOAT32* OPJ_RESTRICT a, |
|
OPJ_UINT32 width, |
|
OPJ_UINT32 nb_elts_read) |
|
{ |
|
opj_v8_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas; |
|
OPJ_UINT32 i; |
|
|
|
for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) { |
|
memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], |
|
(OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); |
|
} |
|
|
|
a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width; |
|
bi = dwt->wavelet + 1 - dwt->cas; |
|
|
|
for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) { |
|
memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], |
|
(OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); |
|
} |
|
} |
|
|
|
static void opj_v8dwt_interleave_partial_v(opj_v8dwt_t* OPJ_RESTRICT dwt, |
|
opj_sparse_array_int32_t* sa, |
|
OPJ_UINT32 sa_col, |
|
OPJ_UINT32 nb_elts_read) |
|
{ |
|
OPJ_BOOL ret; |
|
ret = opj_sparse_array_int32_read(sa, |
|
sa_col, dwt->win_l_x0, |
|
sa_col + nb_elts_read, dwt->win_l_x1, |
|
(OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0), |
|
1, 2 * NB_ELTS_V8, OPJ_TRUE); |
|
assert(ret); |
|
ret = opj_sparse_array_int32_read(sa, |
|
sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0, |
|
sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1, |
|
(OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0), |
|
1, 2 * NB_ELTS_V8, OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
} |
|
|
|
#ifdef __SSE__ |
|
|
|
static void opj_v8dwt_decode_step1_sse(opj_v8_t* w, |
|
OPJ_UINT32 start, |
|
OPJ_UINT32 end, |
|
const __m128 c) |
|
{ |
|
__m128* OPJ_RESTRICT vw = (__m128*) w; |
|
OPJ_UINT32 i = start; |
|
/* To be adapted if NB_ELTS_V8 changes */ |
|
vw += 4 * start; |
|
/* Note: attempt at loop unrolling x2 doesn't help */ |
|
for (; i < end; ++i, vw += 4) { |
|
vw[0] = _mm_mul_ps(vw[0], c); |
|
vw[1] = _mm_mul_ps(vw[1], c); |
|
} |
|
} |
|
|
|
static void opj_v8dwt_decode_step2_sse(opj_v8_t* l, opj_v8_t* w, |
|
OPJ_UINT32 start, |
|
OPJ_UINT32 end, |
|
OPJ_UINT32 m, |
|
__m128 c) |
|
{ |
|
__m128* OPJ_RESTRICT vl = (__m128*) l; |
|
__m128* OPJ_RESTRICT vw = (__m128*) w; |
|
/* To be adapted if NB_ELTS_V8 changes */ |
|
OPJ_UINT32 i; |
|
OPJ_UINT32 imax = opj_uint_min(end, m); |
|
if (start == 0) { |
|
if (imax >= 1) { |
|
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vl[0], vw[0]), c)); |
|
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vl[1], vw[1]), c)); |
|
vw += 4; |
|
start = 1; |
|
} |
|
} else { |
|
vw += start * 4; |
|
} |
|
|
|
i = start; |
|
/* Note: attempt at loop unrolling x2 doesn't help */ |
|
for (; i < imax; ++i) { |
|
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(_mm_add_ps(vw[-4], vw[0]), c)); |
|
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(_mm_add_ps(vw[-3], vw[1]), c)); |
|
vw += 4; |
|
} |
|
if (m < end) { |
|
assert(m + 1 == end); |
|
c = _mm_add_ps(c, c); |
|
vw[-2] = _mm_add_ps(vw[-2], _mm_mul_ps(c, vw[-4])); |
|
vw[-1] = _mm_add_ps(vw[-1], _mm_mul_ps(c, vw[-3])); |
|
} |
|
} |
|
|
|
#else |
|
|
|
static void opj_v8dwt_decode_step1(opj_v8_t* w, |
|
OPJ_UINT32 start, |
|
OPJ_UINT32 end, |
|
const OPJ_FLOAT32 c) |
|
{ |
|
OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w; |
|
OPJ_UINT32 i; |
|
/* To be adapted if NB_ELTS_V8 changes */ |
|
for (i = start; i < end; ++i) { |
|
fw[i * 2 * 8 ] = fw[i * 2 * 8 ] * c; |
|
fw[i * 2 * 8 + 1] = fw[i * 2 * 8 + 1] * c; |
|
fw[i * 2 * 8 + 2] = fw[i * 2 * 8 + 2] * c; |
|
fw[i * 2 * 8 + 3] = fw[i * 2 * 8 + 3] * c; |
|
fw[i * 2 * 8 + 4] = fw[i * 2 * 8 + 4] * c; |
|
fw[i * 2 * 8 + 5] = fw[i * 2 * 8 + 5] * c; |
|
fw[i * 2 * 8 + 6] = fw[i * 2 * 8 + 6] * c; |
|
fw[i * 2 * 8 + 7] = fw[i * 2 * 8 + 7] * c; |
|
} |
|
} |
|
|
|
static void opj_v8dwt_decode_step2(opj_v8_t* l, opj_v8_t* w, |
|
OPJ_UINT32 start, |
|
OPJ_UINT32 end, |
|
OPJ_UINT32 m, |
|
OPJ_FLOAT32 c) |
|
{ |
|
OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l; |
|
OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w; |
|
OPJ_UINT32 i; |
|
OPJ_UINT32 imax = opj_uint_min(end, m); |
|
if (start > 0) { |
|
fw += 2 * NB_ELTS_V8 * start; |
|
fl = fw - 2 * NB_ELTS_V8; |
|
} |
|
/* To be adapted if NB_ELTS_V8 changes */ |
|
for (i = start; i < imax; ++i) { |
|
fw[-8] = fw[-8] + ((fl[0] + fw[0]) * c); |
|
fw[-7] = fw[-7] + ((fl[1] + fw[1]) * c); |
|
fw[-6] = fw[-6] + ((fl[2] + fw[2]) * c); |
|
fw[-5] = fw[-5] + ((fl[3] + fw[3]) * c); |
|
fw[-4] = fw[-4] + ((fl[4] + fw[4]) * c); |
|
fw[-3] = fw[-3] + ((fl[5] + fw[5]) * c); |
|
fw[-2] = fw[-2] + ((fl[6] + fw[6]) * c); |
|
fw[-1] = fw[-1] + ((fl[7] + fw[7]) * c); |
|
fl = fw; |
|
fw += 2 * NB_ELTS_V8; |
|
} |
|
if (m < end) { |
|
assert(m + 1 == end); |
|
c += c; |
|
fw[-8] = fw[-8] + fl[0] * c; |
|
fw[-7] = fw[-7] + fl[1] * c; |
|
fw[-6] = fw[-6] + fl[2] * c; |
|
fw[-5] = fw[-5] + fl[3] * c; |
|
fw[-4] = fw[-4] + fl[4] * c; |
|
fw[-3] = fw[-3] + fl[5] * c; |
|
fw[-2] = fw[-2] + fl[6] * c; |
|
fw[-1] = fw[-1] + fl[7] * c; |
|
} |
|
} |
|
|
|
#endif |
|
|
|
/* <summary> */ |
|
/* Inverse 9-7 wavelet transform in 1-D. */ |
|
/* </summary> */ |
|
static void opj_v8dwt_decode(opj_v8dwt_t* OPJ_RESTRICT dwt) |
|
{ |
|
OPJ_INT32 a, b; |
|
/* BUG_WEIRD_TWO_INVK (look for this identifier in tcd.c) */ |
|
/* Historic value for 2 / opj_invK */ |
|
/* Normally, we should use invK, but if we do so, we have failures in the */ |
|
/* conformance test, due to MSE and peak errors significantly higher than */ |
|
/* accepted value */ |
|
/* Due to using two_invK instead of invK, we have to compensate in tcd.c */ |
|
/* the computation of the stepsize for the non LL subbands */ |
|
const float two_invK = 1.625732422f; |
|
if (dwt->cas == 0) { |
|
if (!((dwt->dn > 0) || (dwt->sn > 1))) { |
|
return; |
|
} |
|
a = 0; |
|
b = 1; |
|
} else { |
|
if (!((dwt->sn > 0) || (dwt->dn > 1))) { |
|
return; |
|
} |
|
a = 1; |
|
b = 0; |
|
} |
|
#ifdef __SSE__ |
|
opj_v8dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, |
|
_mm_set1_ps(opj_K)); |
|
opj_v8dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, |
|
_mm_set1_ps(two_invK)); |
|
opj_v8dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, |
|
dwt->win_l_x0, dwt->win_l_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
|
_mm_set1_ps(-opj_dwt_delta)); |
|
opj_v8dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, |
|
dwt->win_h_x0, dwt->win_h_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
|
_mm_set1_ps(-opj_dwt_gamma)); |
|
opj_v8dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, |
|
dwt->win_l_x0, dwt->win_l_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
|
_mm_set1_ps(-opj_dwt_beta)); |
|
opj_v8dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, |
|
dwt->win_h_x0, dwt->win_h_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
|
_mm_set1_ps(-opj_dwt_alpha)); |
|
#else |
|
opj_v8dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, |
|
opj_K); |
|
opj_v8dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, |
|
two_invK); |
|
opj_v8dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, |
|
dwt->win_l_x0, dwt->win_l_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
|
-opj_dwt_delta); |
|
opj_v8dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, |
|
dwt->win_h_x0, dwt->win_h_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
|
-opj_dwt_gamma); |
|
opj_v8dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, |
|
dwt->win_l_x0, dwt->win_l_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
|
-opj_dwt_beta); |
|
opj_v8dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, |
|
dwt->win_h_x0, dwt->win_h_x1, |
|
(OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
|
-opj_dwt_alpha); |
|
#endif |
|
} |
|
|
|
typedef struct { |
|
opj_v8dwt_t h; |
|
OPJ_UINT32 rw; |
|
OPJ_UINT32 w; |
|
OPJ_FLOAT32 * OPJ_RESTRICT aj; |
|
OPJ_UINT32 nb_rows; |
|
} opj_dwt97_decode_h_job_t; |
|
|
|
static void opj_dwt97_decode_h_func(void* user_data, opj_tls_t* tls) |
|
{ |
|
OPJ_UINT32 j; |
|
opj_dwt97_decode_h_job_t* job; |
|
OPJ_FLOAT32 * OPJ_RESTRICT aj; |
|
OPJ_UINT32 w; |
|
(void)tls; |
|
|
|
job = (opj_dwt97_decode_h_job_t*)user_data; |
|
w = job->w; |
|
|
|
assert((job->nb_rows % NB_ELTS_V8) == 0); |
|
|
|
aj = job->aj; |
|
for (j = 0; j + NB_ELTS_V8 <= job->nb_rows; j += NB_ELTS_V8) { |
|
OPJ_UINT32 k; |
|
opj_v8dwt_interleave_h(&job->h, aj, job->w, NB_ELTS_V8); |
|
opj_v8dwt_decode(&job->h); |
|
|
|
/* To be adapted if NB_ELTS_V8 changes */ |
|
for (k = 0; k < job->rw; k++) { |
|
aj[k ] = job->h.wavelet[k].f[0]; |
|
aj[k + (OPJ_SIZE_T)w ] = job->h.wavelet[k].f[1]; |
|
aj[k + (OPJ_SIZE_T)w * 2] = job->h.wavelet[k].f[2]; |
|
aj[k + (OPJ_SIZE_T)w * 3] = job->h.wavelet[k].f[3]; |
|
} |
|
for (k = 0; k < job->rw; k++) { |
|
aj[k + (OPJ_SIZE_T)w * 4] = job->h.wavelet[k].f[4]; |
|
aj[k + (OPJ_SIZE_T)w * 5] = job->h.wavelet[k].f[5]; |
|
aj[k + (OPJ_SIZE_T)w * 6] = job->h.wavelet[k].f[6]; |
|
aj[k + (OPJ_SIZE_T)w * 7] = job->h.wavelet[k].f[7]; |
|
} |
|
|
|
aj += w * NB_ELTS_V8; |
|
} |
|
|
|
opj_aligned_free(job->h.wavelet); |
|
opj_free(job); |
|
} |
|
|
|
|
|
typedef struct { |
|
opj_v8dwt_t v; |
|
OPJ_UINT32 rh; |
|
OPJ_UINT32 w; |
|
OPJ_FLOAT32 * OPJ_RESTRICT aj; |
|
OPJ_UINT32 nb_columns; |
|
} opj_dwt97_decode_v_job_t; |
|
|
|
static void opj_dwt97_decode_v_func(void* user_data, opj_tls_t* tls) |
|
{ |
|
OPJ_UINT32 j; |
|
opj_dwt97_decode_v_job_t* job; |
|
OPJ_FLOAT32 * OPJ_RESTRICT aj; |
|
(void)tls; |
|
|
|
job = (opj_dwt97_decode_v_job_t*)user_data; |
|
|
|
assert((job->nb_columns % NB_ELTS_V8) == 0); |
|
|
|
aj = job->aj; |
|
for (j = 0; j + NB_ELTS_V8 <= job->nb_columns; j += NB_ELTS_V8) { |
|
OPJ_UINT32 k; |
|
|
|
opj_v8dwt_interleave_v(&job->v, aj, job->w, NB_ELTS_V8); |
|
opj_v8dwt_decode(&job->v); |
|
|
|
for (k = 0; k < job->rh; ++k) { |
|
memcpy(&aj[k * (OPJ_SIZE_T)job->w], &job->v.wavelet[k], |
|
NB_ELTS_V8 * sizeof(OPJ_FLOAT32)); |
|
} |
|
aj += NB_ELTS_V8; |
|
} |
|
|
|
opj_aligned_free(job->v.wavelet); |
|
opj_free(job); |
|
} |
|
|
|
|
|
/* <summary> */ |
|
/* Inverse 9-7 wavelet transform in 2-D. */ |
|
/* </summary> */ |
|
static |
|
OPJ_BOOL opj_dwt_decode_tile_97(opj_thread_pool_t* tp, |
|
opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
|
OPJ_UINT32 numres) |
|
{ |
|
opj_v8dwt_t h; |
|
opj_v8dwt_t v; |
|
|
|
opj_tcd_resolution_t* res = tilec->resolutions; |
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - |
|
res->x0); /* width of the resolution level computed */ |
|
OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - |
|
res->y0); /* height of the resolution level computed */ |
|
|
|
OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
|
1].x1 - |
|
tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
|
|
|
OPJ_SIZE_T l_data_size; |
|
const int num_threads = opj_thread_pool_get_thread_count(tp); |
|
|
|
if (numres == 1) { |
|
return OPJ_TRUE; |
|
} |
|
|
|
l_data_size = opj_dwt_max_resolution(res, numres); |
|
/* overflow check */ |
|
if (l_data_size > (SIZE_MAX / sizeof(opj_v8_t))) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
h.wavelet = (opj_v8_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
|
if (!h.wavelet) { |
|
/* FIXME event manager error callback */ |
|
return OPJ_FALSE; |
|
} |
|
v.wavelet = h.wavelet; |
|
|
|
while (--numres) { |
|
OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data; |
|
OPJ_UINT32 j; |
|
|
|
h.sn = (OPJ_INT32)rw; |
|
v.sn = (OPJ_INT32)rh; |
|
|
|
++res; |
|
|
|
rw = (OPJ_UINT32)(res->x1 - |
|
res->x0); /* width of the resolution level computed */ |
|
rh = (OPJ_UINT32)(res->y1 - |
|
res->y0); /* height of the resolution level computed */ |
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
|
h.cas = res->x0 % 2; |
|
|
|
h.win_l_x0 = 0; |
|
h.win_l_x1 = (OPJ_UINT32)h.sn; |
|
h.win_h_x0 = 0; |
|
h.win_h_x1 = (OPJ_UINT32)h.dn; |
|
|
|
if (num_threads <= 1 || rh < 2 * NB_ELTS_V8) { |
|
for (j = 0; j + (NB_ELTS_V8 - 1) < rh; j += NB_ELTS_V8) { |
|
OPJ_UINT32 k; |
|
opj_v8dwt_interleave_h(&h, aj, w, NB_ELTS_V8); |
|
opj_v8dwt_decode(&h); |
|
|
|
/* To be adapted if NB_ELTS_V8 changes */ |
|
for (k = 0; k < rw; k++) { |
|
aj[k ] = h.wavelet[k].f[0]; |
|
aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1]; |
|
aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2]; |
|
aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3]; |
|
} |
|
for (k = 0; k < rw; k++) { |
|
aj[k + (OPJ_SIZE_T)w * 4] = h.wavelet[k].f[4]; |
|
aj[k + (OPJ_SIZE_T)w * 5] = h.wavelet[k].f[5]; |
|
aj[k + (OPJ_SIZE_T)w * 6] = h.wavelet[k].f[6]; |
|
aj[k + (OPJ_SIZE_T)w * 7] = h.wavelet[k].f[7]; |
|
} |
|
|
|
aj += w * NB_ELTS_V8; |
|
} |
|
} else { |
|
OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
|
OPJ_UINT32 step_j; |
|
|
|
if ((rh / NB_ELTS_V8) < num_jobs) { |
|
num_jobs = rh / NB_ELTS_V8; |
|
} |
|
step_j = ((rh / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
|
for (j = 0; j < num_jobs; j++) { |
|
opj_dwt97_decode_h_job_t* job; |
|
|
|
job = (opj_dwt97_decode_h_job_t*) opj_malloc(sizeof(opj_dwt97_decode_h_job_t)); |
|
if (!job) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
job->h.wavelet = (opj_v8_t*)opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
|
if (!job->h.wavelet) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_free(job); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
job->h.dn = h.dn; |
|
job->h.sn = h.sn; |
|
job->h.cas = h.cas; |
|
job->h.win_l_x0 = h.win_l_x0; |
|
job->h.win_l_x1 = h.win_l_x1; |
|
job->h.win_h_x0 = h.win_h_x0; |
|
job->h.win_h_x1 = h.win_h_x1; |
|
job->rw = rw; |
|
job->w = w; |
|
job->aj = aj; |
|
job->nb_rows = (j + 1 == num_jobs) ? (rh & (OPJ_UINT32)~ |
|
(NB_ELTS_V8 - 1)) - j * step_j : step_j; |
|
aj += w * job->nb_rows; |
|
opj_thread_pool_submit_job(tp, opj_dwt97_decode_h_func, job); |
|
} |
|
opj_thread_pool_wait_completion(tp, 0); |
|
j = rh & (OPJ_UINT32)~(NB_ELTS_V8 - 1); |
|
} |
|
|
|
if (j < rh) { |
|
OPJ_UINT32 k; |
|
opj_v8dwt_interleave_h(&h, aj, w, rh - j); |
|
opj_v8dwt_decode(&h); |
|
for (k = 0; k < rw; k++) { |
|
OPJ_UINT32 l; |
|
for (l = 0; l < rh - j; l++) { |
|
aj[k + (OPJ_SIZE_T)w * l ] = h.wavelet[k].f[l]; |
|
} |
|
} |
|
} |
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
|
v.cas = res->y0 % 2; |
|
v.win_l_x0 = 0; |
|
v.win_l_x1 = (OPJ_UINT32)v.sn; |
|
v.win_h_x0 = 0; |
|
v.win_h_x1 = (OPJ_UINT32)v.dn; |
|
|
|
aj = (OPJ_FLOAT32*) tilec->data; |
|
if (num_threads <= 1 || rw < 2 * NB_ELTS_V8) { |
|
for (j = rw; j > (NB_ELTS_V8 - 1); j -= NB_ELTS_V8) { |
|
OPJ_UINT32 k; |
|
|
|
opj_v8dwt_interleave_v(&v, aj, w, NB_ELTS_V8); |
|
opj_v8dwt_decode(&v); |
|
|
|
for (k = 0; k < rh; ++k) { |
|
memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], NB_ELTS_V8 * sizeof(OPJ_FLOAT32)); |
|
} |
|
aj += NB_ELTS_V8; |
|
} |
|
} else { |
|
/* "bench_dwt -I" shows that scaling is poor, likely due to RAM |
|
transfer being the limiting factor. So limit the number of |
|
threads. |
|
*/ |
|
OPJ_UINT32 num_jobs = opj_uint_max((OPJ_UINT32)num_threads / 2, 2U); |
|
OPJ_UINT32 step_j; |
|
|
|
if ((rw / NB_ELTS_V8) < num_jobs) { |
|
num_jobs = rw / NB_ELTS_V8; |
|
} |
|
step_j = ((rw / num_jobs) / NB_ELTS_V8) * NB_ELTS_V8; |
|
for (j = 0; j < num_jobs; j++) { |
|
opj_dwt97_decode_v_job_t* job; |
|
|
|
job = (opj_dwt97_decode_v_job_t*) opj_malloc(sizeof(opj_dwt97_decode_v_job_t)); |
|
if (!job) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
job->v.wavelet = (opj_v8_t*)opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
|
if (!job->v.wavelet) { |
|
opj_thread_pool_wait_completion(tp, 0); |
|
opj_free(job); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
job->v.dn = v.dn; |
|
job->v.sn = v.sn; |
|
job->v.cas = v.cas; |
|
job->v.win_l_x0 = v.win_l_x0; |
|
job->v.win_l_x1 = v.win_l_x1; |
|
job->v.win_h_x0 = v.win_h_x0; |
|
job->v.win_h_x1 = v.win_h_x1; |
|
job->rh = rh; |
|
job->w = w; |
|
job->aj = aj; |
|
job->nb_columns = (j + 1 == num_jobs) ? (rw & (OPJ_UINT32)~ |
|
(NB_ELTS_V8 - 1)) - j * step_j : step_j; |
|
aj += job->nb_columns; |
|
opj_thread_pool_submit_job(tp, opj_dwt97_decode_v_func, job); |
|
} |
|
opj_thread_pool_wait_completion(tp, 0); |
|
} |
|
|
|
if (rw & (NB_ELTS_V8 - 1)) { |
|
OPJ_UINT32 k; |
|
|
|
j = rw & (NB_ELTS_V8 - 1); |
|
|
|
opj_v8dwt_interleave_v(&v, aj, w, j); |
|
opj_v8dwt_decode(&v); |
|
|
|
for (k = 0; k < rh; ++k) { |
|
memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], |
|
(OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32)); |
|
} |
|
} |
|
} |
|
|
|
opj_aligned_free(h.wavelet); |
|
return OPJ_TRUE; |
|
} |
|
|
|
static |
|
OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
|
OPJ_UINT32 numres) |
|
{ |
|
opj_sparse_array_int32_t* sa; |
|
opj_v8dwt_t h; |
|
opj_v8dwt_t v; |
|
OPJ_UINT32 resno; |
|
/* This value matches the maximum left/right extension given in tables */ |
|
/* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */ |
|
/* we currently use 3. */ |
|
const OPJ_UINT32 filter_width = 4U; |
|
|
|
opj_tcd_resolution_t* tr = tilec->resolutions; |
|
opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
|
|
|
OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
|
tr->x0); /* width of the resolution level computed */ |
|
OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
|
tr->y0); /* height of the resolution level computed */ |
|
|
|
OPJ_SIZE_T l_data_size; |
|
|
|
/* Compute the intersection of the area of interest, expressed in tile coordinates */ |
|
/* with the tile coordinates */ |
|
OPJ_UINT32 win_tcx0 = tilec->win_x0; |
|
OPJ_UINT32 win_tcy0 = tilec->win_y0; |
|
OPJ_UINT32 win_tcx1 = tilec->win_x1; |
|
OPJ_UINT32 win_tcy1 = tilec->win_y1; |
|
|
|
if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { |
|
return OPJ_TRUE; |
|
} |
|
|
|
sa = opj_dwt_init_sparse_array(tilec, numres); |
|
if (sa == NULL) { |
|
return OPJ_FALSE; |
|
} |
|
|
|
if (numres == 1U) { |
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
|
tilec->data_win, |
|
1, tr_max->win_x1 - tr_max->win_x0, |
|
OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_TRUE; |
|
} |
|
|
|
l_data_size = opj_dwt_max_resolution(tr, numres); |
|
/* overflow check */ |
|
if (l_data_size > (SIZE_MAX / sizeof(opj_v8_t))) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_FALSE; |
|
} |
|
h.wavelet = (opj_v8_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v8_t)); |
|
if (!h.wavelet) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
return OPJ_FALSE; |
|
} |
|
v.wavelet = h.wavelet; |
|
|
|
for (resno = 1; resno < numres; resno ++) { |
|
OPJ_UINT32 j; |
|
/* Window of interest subband-based coordinates */ |
|
OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; |
|
OPJ_UINT32 win_hl_x0, win_hl_x1; |
|
OPJ_UINT32 win_lh_y0, win_lh_y1; |
|
/* Window of interest tile-resolution-based coordinates */ |
|
OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; |
|
/* Tile-resolution subband-based coordinates */ |
|
OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; |
|
|
|
++tr; |
|
|
|
h.sn = (OPJ_INT32)rw; |
|
v.sn = (OPJ_INT32)rh; |
|
|
|
rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
|
rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
|
|
|
h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
|
h.cas = tr->x0 % 2; |
|
|
|
v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
|
v.cas = tr->y0 % 2; |
|
|
|
/* Get the subband coordinates for the window of interest */ |
|
/* LL band */ |
|
opj_dwt_get_band_coordinates(tilec, resno, 0, |
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
|
&win_ll_x0, &win_ll_y0, |
|
&win_ll_x1, &win_ll_y1); |
|
|
|
/* HL band */ |
|
opj_dwt_get_band_coordinates(tilec, resno, 1, |
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
|
&win_hl_x0, NULL, &win_hl_x1, NULL); |
|
|
|
/* LH band */ |
|
opj_dwt_get_band_coordinates(tilec, resno, 2, |
|
win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
|
NULL, &win_lh_y0, NULL, &win_lh_y1); |
|
|
|
/* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ |
|
tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; |
|
tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; |
|
tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; |
|
tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; |
|
|
|
/* Subtract the origin of the bands for this tile, to the subwindow */ |
|
/* of interest band coordinates, so as to get them relative to the */ |
|
/* tile */ |
|
win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); |
|
win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); |
|
win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); |
|
win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); |
|
win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); |
|
win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); |
|
win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); |
|
win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); |
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); |
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); |
|
|
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); |
|
opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); |
|
|
|
/* Compute the tile-resolution-based coordinates for the window of interest */ |
|
if (h.cas == 0) { |
|
win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); |
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); |
|
} else { |
|
win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); |
|
win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); |
|
} |
|
|
|
if (v.cas == 0) { |
|
win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); |
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); |
|
} else { |
|
win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); |
|
win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); |
|
} |
|
|
|
h.win_l_x0 = win_ll_x0; |
|
h.win_l_x1 = win_ll_x1; |
|
h.win_h_x0 = win_hl_x0; |
|
h.win_h_x1 = win_hl_x1; |
|
for (j = 0; j + (NB_ELTS_V8 - 1) < rh; j += NB_ELTS_V8) { |
|
if ((j + (NB_ELTS_V8 - 1) >= win_ll_y0 && j < win_ll_y1) || |
|
(j + (NB_ELTS_V8 - 1) >= win_lh_y0 + (OPJ_UINT32)v.sn && |
|
j < win_lh_y1 + (OPJ_UINT32)v.sn)) { |
|
opj_v8dwt_interleave_partial_h(&h, sa, j, opj_uint_min(NB_ELTS_V8, rh - j)); |
|
opj_v8dwt_decode(&h); |
|
if (!opj_sparse_array_int32_write(sa, |
|
win_tr_x0, j, |
|
win_tr_x1, j + NB_ELTS_V8, |
|
(OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], |
|
NB_ELTS_V8, 1, OPJ_TRUE)) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
} |
|
} |
|
|
|
if (j < rh && |
|
((j + (NB_ELTS_V8 - 1) >= win_ll_y0 && j < win_ll_y1) || |
|
(j + (NB_ELTS_V8 - 1) >= win_lh_y0 + (OPJ_UINT32)v.sn && |
|
j < win_lh_y1 + (OPJ_UINT32)v.sn))) { |
|
opj_v8dwt_interleave_partial_h(&h, sa, j, rh - j); |
|
opj_v8dwt_decode(&h); |
|
if (!opj_sparse_array_int32_write(sa, |
|
win_tr_x0, j, |
|
win_tr_x1, rh, |
|
(OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], |
|
NB_ELTS_V8, 1, OPJ_TRUE)) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
} |
|
|
|
v.win_l_x0 = win_ll_y0; |
|
v.win_l_x1 = win_ll_y1; |
|
v.win_h_x0 = win_lh_y0; |
|
v.win_h_x1 = win_lh_y1; |
|
for (j = win_tr_x0; j < win_tr_x1; j += NB_ELTS_V8) { |
|
OPJ_UINT32 nb_elts = opj_uint_min(NB_ELTS_V8, win_tr_x1 - j); |
|
|
|
opj_v8dwt_interleave_partial_v(&v, sa, j, nb_elts); |
|
opj_v8dwt_decode(&v); |
|
|
|
if (!opj_sparse_array_int32_write(sa, |
|
j, win_tr_y0, |
|
j + nb_elts, win_tr_y1, |
|
(OPJ_INT32*)&h.wavelet[win_tr_y0].f[0], |
|
1, NB_ELTS_V8, OPJ_TRUE)) { |
|
/* FIXME event manager error callback */ |
|
opj_sparse_array_int32_free(sa); |
|
opj_aligned_free(h.wavelet); |
|
return OPJ_FALSE; |
|
} |
|
} |
|
} |
|
|
|
{ |
|
OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
|
tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
|
tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
|
tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
|
tilec->data_win, |
|
1, tr_max->win_x1 - tr_max->win_x0, |
|
OPJ_TRUE); |
|
assert(ret); |
|
OPJ_UNUSED(ret); |
|
} |
|
opj_sparse_array_int32_free(sa); |
|
|
|
opj_aligned_free(h.wavelet); |
|
return OPJ_TRUE; |
|
} |
|
|
|
|
|
OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd, |
|
opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
|
OPJ_UINT32 numres) |
|
{ |
|
if (p_tcd->whole_tile_decoding) { |
|
return opj_dwt_decode_tile_97(p_tcd->thread_pool, tilec, numres); |
|
} else { |
|
return opj_dwt_decode_partial_97(tilec, numres); |
|
} |
|
}
|
|
|