Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

490 lines
17 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <utility>
#include "internal_shared.hpp"
#include "opencv2/gpu/device/utility.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace cv { namespace gpu { namespace canny
{
__global__ void calcSobelRowPass(PtrStep src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
{
__shared__ int smem[16][18];
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (i < rows)
{
smem[threadIdx.y][threadIdx.x + 1] = src.ptr(i)[j];
if (threadIdx.x == 0)
{
smem[threadIdx.y][0] = src.ptr(i)[max(j - 1, 0)];
smem[threadIdx.y][17] = src.ptr(i)[min(j + 16, cols - 1)];
}
__syncthreads();
if (j < cols)
{
dx_buf.ptr(i)[j] = -smem[threadIdx.y][threadIdx.x] + smem[threadIdx.y][threadIdx.x + 2];
dy_buf.ptr(i)[j] = smem[threadIdx.y][threadIdx.x] + 2 * smem[threadIdx.y][threadIdx.x + 1] + smem[threadIdx.y][threadIdx.x + 2];
}
}
}
void calcSobelRowPass_gpu(PtrStep src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
struct L1
{
static __device__ __forceinline__ float calc(int x, int y)
{
return abs(x) + abs(y);
}
};
struct L2
{
static __device__ __forceinline__ float calc(int x, int y)
{
return sqrtf(x * x + y * y);
}
};
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
{
__shared__ int sdx[18][16];
__shared__ int sdy[18][16];
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (j < cols)
{
sdx[threadIdx.y + 1][threadIdx.x] = dx_buf.ptr(i)[j];
sdy[threadIdx.y + 1][threadIdx.x] = dy_buf.ptr(i)[j];
if (threadIdx.y == 0)
{
sdx[0][threadIdx.x] = dx_buf.ptr(max(i - 1, 0))[j];
sdx[17][threadIdx.x] = dx_buf.ptr(min(i + 16, rows - 1))[j];
sdy[0][threadIdx.x] = dy_buf.ptr(max(i - 1, 0))[j];
sdy[17][threadIdx.x] = dy_buf.ptr(min(i + 16, rows - 1))[j];
}
__syncthreads();
if (i < rows)
{
int x = sdx[threadIdx.y][threadIdx.x] + 2 * sdx[threadIdx.y + 1][threadIdx.x] + sdx[threadIdx.y + 2][threadIdx.x];
int y = -sdy[threadIdx.y][threadIdx.x] + sdy[threadIdx.y + 2][threadIdx.x];
dx.ptr(i)[j] = x;
dy.ptr(i)[j] = y;
mag.ptr(i + 1)[j + 1] = Norm::calc(x, y);
}
}
}
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
if (L2Grad)
calcMagnitude<L2><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
else
calcMagnitude<L1><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
{
const int j = blockIdx.x * blockDim.x + threadIdx.x;
const int i = blockIdx.y * blockDim.y + threadIdx.y;
if (i < rows && j < cols)
mag.ptr(i + 1)[j + 1] = Norm::calc(dx.ptr(i)[j], dy.ptr(i)[j]);
}
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
if (L2Grad)
calcMagnitude<L2><<<grid, block>>>(dx, dy, mag, rows, cols);
else
calcMagnitude<L1><<<grid, block>>>(dx, dy, mag, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
//////////////////////////////////////////////////////////////////////////////////////////
#define CANNY_SHIFT 15
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
__global__ void calcMap(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
{
__shared__ float smem[18][18];
const int j = blockIdx.x * 16 + threadIdx.x;
const int i = blockIdx.y * 16 + threadIdx.y;
const int tid = threadIdx.y * 16 + threadIdx.x;
const int lx = tid % 18;
const int ly = tid / 18;
if (ly < 14)
smem[ly][lx] = mag.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
smem[ly + 14][lx] = mag.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
__syncthreads();
if (i < rows && j < cols)
{
int x = dx.ptr(i)[j];
int y = dy.ptr(i)[j];
const int s = (x ^ y) < 0 ? -1 : 1;
const float m = smem[threadIdx.y + 1][threadIdx.x + 1];
x = abs(x);
y = abs(y);
// 0 - the pixel can not belong to an edge
// 1 - the pixel might belong to an edge
// 2 - the pixel does belong to an edge
int edge_type = 0;
if (m > low_thresh)
{
const int tg22x = x * TG22;
const int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
y <<= CANNY_SHIFT;
if (y < tg22x)
{
if (m > smem[threadIdx.y + 1][threadIdx.x] && m >= smem[threadIdx.y + 1][threadIdx.x + 2])
edge_type = 1 + (int)(m > high_thresh);
}
else if( y > tg67x )
{
if (m > smem[threadIdx.y][threadIdx.x + 1] && m >= smem[threadIdx.y + 2][threadIdx.x + 1])
edge_type = 1 + (int)(m > high_thresh);
}
else
{
if (m > smem[threadIdx.y][threadIdx.x + 1 - s] && m > smem[threadIdx.y + 2][threadIdx.x + 1 + s])
edge_type = 1 + (int)(m > high_thresh);
}
}
map.ptr(i + 1)[j + 1] = edge_type;
}
}
#undef CANNY_SHIFT
#undef TG22
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
//////////////////////////////////////////////////////////////////////////////////////////
__device__ unsigned int counter = 0;
__global__ void edgesHysteresisLocal(PtrStepi map, ushort2* st, int rows, int cols)
{
#if __CUDA_ARCH__ >= 120
__shared__ int smem[18][18];
const int j = blockIdx.x * 16 + threadIdx.x;
const int i = blockIdx.y * 16 + threadIdx.y;
const int tid = threadIdx.y * 16 + threadIdx.x;
const int lx = tid % 18;
const int ly = tid / 18;
if (ly < 14)
smem[ly][lx] = map.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
smem[ly + 14][lx] = map.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
__syncthreads();
if (i < rows && j < cols)
{
int n;
#pragma unroll
for (int k = 0; k < 16; ++k)
{
n = 0;
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
{
n += smem[threadIdx.y ][threadIdx.x ] == 2;
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
}
if (n > 0)
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
}
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
map.ptr(i + 1)[j + 1] = e;
n = 0;
if (e == 2)
{
n += smem[threadIdx.y ][threadIdx.x ] == 1;
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
}
if (n > 0)
{
const unsigned int ind = atomicInc(&counter, (unsigned int)(-1));
st[ind] = make_ushort2(j + 1, i + 1);
}
}
#endif
}
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
__constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
__global__ void edgesHysteresisGlobal(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols, int count)
{
#if __CUDA_ARCH__ >= 120
const int stack_size = 512;
__shared__ unsigned int s_counter;
__shared__ unsigned int s_ind;
__shared__ ushort2 s_st[stack_size];
if (threadIdx.x == 0)
s_counter = 0;
__syncthreads();
int ind = blockIdx.y * gridDim.x + blockIdx.x;
if (ind < count)
{
ushort2 pos = st1[ind];
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
{
if (threadIdx.x < 8)
{
pos.x += c_dx[threadIdx.x];
pos.y += c_dy[threadIdx.x];
if (map.ptr(pos.y)[pos.x] == 1)
{
map.ptr(pos.y)[pos.x] = 2;
ind = atomicInc(&s_counter, (unsigned int)(-1));
s_st[ind] = pos;
}
}
__syncthreads();
while (s_counter > 0 && s_counter <= stack_size - blockDim.x)
{
const int subTaskIdx = threadIdx.x >> 3;
const int portion = min(s_counter, blockDim.x >> 3);
pos.x = pos.y = 0;
if (subTaskIdx < portion)
pos = s_st[s_counter - 1 - subTaskIdx];
__syncthreads();
if (threadIdx.x == 0)
s_counter -= portion;
__syncthreads();
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
{
pos.x += c_dx[threadIdx.x & 7];
pos.y += c_dy[threadIdx.x & 7];
if (map.ptr(pos.y)[pos.x] == 1)
{
map.ptr(pos.y)[pos.x] = 2;
ind = atomicInc(&s_counter, (unsigned int)(-1));
s_st[ind] = pos;
}
}
__syncthreads();
}
if (s_counter > 0)
{
if (threadIdx.x == 0)
{
ind = atomicAdd(&counter, s_counter);
s_ind = ind - s_counter;
}
__syncthreads();
ind = s_ind;
for (int i = threadIdx.x; i < s_counter; i += blockDim.x)
{
st2[ind + i] = s_st[i];
}
}
}
}
#endif
}
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols)
{
void* counter_ptr;
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, "cv::gpu::canny::counter") );
unsigned int count;
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
while (count > 0)
{
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
dim3 block(128, 1, 1);
dim3 grid(min(count, 65535u), divUp(count, 65535), 1);
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
std::swap(st1, st2);
}
}
__global__ void getEdges(PtrStepi map, PtrStep dst, int rows, int cols)
{
const int j = blockIdx.x * 16 + threadIdx.x;
const int i = blockIdx.y * 16 + threadIdx.y;
if (i < rows && j < cols)
dst.ptr(i)[j] = (uchar)(-(map.ptr(i + 1)[j + 1] >> 1));
}
void getEdges_gpu(PtrStepi map, PtrStep dst, int rows, int cols)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
getEdges<<<grid, block>>>(map, dst, rows, cols);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaThreadSynchronize());
}
}}}