mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
9.1 KiB
296 lines
9.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
cv::gpu::CudaMem::CudaMem() |
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) |
|
{ |
|
} |
|
|
|
cv::gpu::CudaMem::CudaMem(int _rows, int _cols, int _type, int _alloc_type) |
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) |
|
{ |
|
if( _rows > 0 && _cols > 0 ) |
|
create( _rows, _cols, _type, _alloc_type); |
|
} |
|
|
|
cv::gpu::CudaMem::CudaMem(Size _size, int _type, int _alloc_type) |
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) |
|
{ |
|
if( _size.height > 0 && _size.width > 0 ) |
|
create( _size.height, _size.width, _type, _alloc_type); |
|
} |
|
|
|
cv::gpu::CudaMem::CudaMem(const CudaMem& m) |
|
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type) |
|
{ |
|
if( refcount ) |
|
CV_XADD(refcount, 1); |
|
} |
|
|
|
cv::gpu::CudaMem::CudaMem(const Mat& m, int _alloc_type) |
|
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(0) |
|
{ |
|
if( m.rows > 0 && m.cols > 0 ) |
|
create( m.size(), m.type(), _alloc_type); |
|
|
|
Mat tmp = createMatHeader(); |
|
m.copyTo(tmp); |
|
} |
|
|
|
cv::gpu::CudaMem::~CudaMem() |
|
{ |
|
release(); |
|
} |
|
|
|
CudaMem& cv::gpu::CudaMem::operator = (const CudaMem& m) |
|
{ |
|
if( this != &m ) |
|
{ |
|
if( m.refcount ) |
|
CV_XADD(m.refcount, 1); |
|
release(); |
|
flags = m.flags; |
|
rows = m.rows; cols = m.cols; |
|
step = m.step; data = m.data; |
|
datastart = m.datastart; |
|
dataend = m.dataend; |
|
refcount = m.refcount; |
|
alloc_type = m.alloc_type; |
|
} |
|
return *this; |
|
} |
|
|
|
CudaMem cv::gpu::CudaMem::clone() const |
|
{ |
|
CudaMem m(size(), type(), alloc_type); |
|
Mat to = m; |
|
Mat from = *this; |
|
from.copyTo(to); |
|
return m; |
|
} |
|
|
|
void cv::gpu::CudaMem::create(Size _size, int _type, int _alloc_type) |
|
{ |
|
create(_size.height, _size.width, _type, _alloc_type); |
|
} |
|
|
|
Mat cv::gpu::CudaMem::createMatHeader() const |
|
{ |
|
return Mat(size(), type(), data, step); |
|
} |
|
|
|
cv::gpu::CudaMem::operator Mat() const |
|
{ |
|
return createMatHeader(); |
|
} |
|
|
|
cv::gpu::CudaMem::operator GpuMat() const |
|
{ |
|
return createGpuMatHeader(); |
|
} |
|
|
|
bool cv::gpu::CudaMem::isContinuous() const |
|
{ |
|
return (flags & Mat::CONTINUOUS_FLAG) != 0; |
|
} |
|
|
|
size_t cv::gpu::CudaMem::elemSize() const |
|
{ |
|
return CV_ELEM_SIZE(flags); |
|
} |
|
|
|
size_t cv::gpu::CudaMem::elemSize1() const |
|
{ |
|
return CV_ELEM_SIZE1(flags); |
|
} |
|
|
|
int cv::gpu::CudaMem::type() const |
|
{ |
|
return CV_MAT_TYPE(flags); |
|
} |
|
|
|
int cv::gpu::CudaMem::depth() const |
|
{ |
|
return CV_MAT_DEPTH(flags); |
|
} |
|
|
|
int cv::gpu::CudaMem::channels() const |
|
{ |
|
return CV_MAT_CN(flags); |
|
} |
|
|
|
size_t cv::gpu::CudaMem::step1() const |
|
{ |
|
return step/elemSize1(); |
|
} |
|
|
|
Size cv::gpu::CudaMem::size() const |
|
{ |
|
return Size(cols, rows); |
|
} |
|
|
|
bool cv::gpu::CudaMem::empty() const |
|
{ |
|
return data == 0; |
|
} |
|
|
|
#if !defined (HAVE_CUDA) |
|
|
|
void cv::gpu::registerPageLocked(Mat&) { throw_nogpu(); } |
|
void cv::gpu::unregisterPageLocked(Mat&) { throw_nogpu(); } |
|
void cv::gpu::CudaMem::create(int /*_rows*/, int /*_cols*/, int /*_type*/, int /*type_alloc*/) { throw_nogpu(); } |
|
bool cv::gpu::CudaMem::canMapHostMemory() { throw_nogpu(); return false; } |
|
void cv::gpu::CudaMem::release() { throw_nogpu(); } |
|
GpuMat cv::gpu::CudaMem::createGpuMatHeader () const { throw_nogpu(); return GpuMat(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
void registerPageLocked(Mat& m) |
|
{ |
|
cudaSafeCall( cudaHostRegister(m.ptr(), m.step * m.rows, cudaHostRegisterPortable) ); |
|
} |
|
|
|
void unregisterPageLocked(Mat& m) |
|
{ |
|
cudaSafeCall( cudaHostUnregister(m.ptr()) ); |
|
} |
|
|
|
bool cv::gpu::CudaMem::canMapHostMemory() |
|
{ |
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, getDevice()) ); |
|
return (prop.canMapHostMemory != 0) ? true : false; |
|
} |
|
|
|
namespace |
|
{ |
|
size_t alignUpStep(size_t what, size_t alignment) |
|
{ |
|
size_t alignMask = alignment-1; |
|
size_t inverseAlignMask = ~alignMask; |
|
size_t res = (what + alignMask) & inverseAlignMask; |
|
return res; |
|
} |
|
} |
|
|
|
void cv::gpu::CudaMem::create(int _rows, int _cols, int _type, int _alloc_type) |
|
{ |
|
if (_alloc_type == ALLOC_ZEROCOPY && !canMapHostMemory()) |
|
cv::gpu::error("ZeroCopy is not supported by current device", __FILE__, __LINE__); |
|
|
|
_type &= TYPE_MASK; |
|
if( rows == _rows && cols == _cols && type() == _type && data ) |
|
return; |
|
if( data ) |
|
release(); |
|
CV_DbgAssert( _rows >= 0 && _cols >= 0 ); |
|
if( _rows > 0 && _cols > 0 ) |
|
{ |
|
flags = Mat::MAGIC_VAL + Mat::CONTINUOUS_FLAG + _type; |
|
rows = _rows; |
|
cols = _cols; |
|
step = elemSize()*cols; |
|
if (_alloc_type == ALLOC_ZEROCOPY) |
|
{ |
|
cudaDeviceProp prop; |
|
cudaSafeCall( cudaGetDeviceProperties(&prop, getDevice()) ); |
|
step = alignUpStep(step, prop.textureAlignment); |
|
} |
|
int64 _nettosize = (int64)step*rows; |
|
size_t nettosize = (size_t)_nettosize; |
|
if( _nettosize != (int64)nettosize ) |
|
CV_Error(CV_StsNoMem, "Too big buffer is allocated"); |
|
size_t datasize = alignSize(nettosize, (int)sizeof(*refcount)); |
|
|
|
//datastart = data = (uchar*)fastMalloc(datasize + sizeof(*refcount)); |
|
alloc_type = _alloc_type; |
|
void *ptr; |
|
|
|
switch (alloc_type) |
|
{ |
|
case ALLOC_PAGE_LOCKED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocDefault) ); break; |
|
case ALLOC_ZEROCOPY: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocMapped) ); break; |
|
case ALLOC_WRITE_COMBINED: cudaSafeCall( cudaHostAlloc( &ptr, datasize, cudaHostAllocWriteCombined) ); break; |
|
default: cv::gpu::error("Invalid alloc type", __FILE__, __LINE__); |
|
} |
|
|
|
datastart = data = (uchar*)ptr; |
|
dataend = data + nettosize; |
|
|
|
refcount = (int*)cv::fastMalloc(sizeof(*refcount)); |
|
*refcount = 1; |
|
} |
|
} |
|
|
|
GpuMat cv::gpu::CudaMem::createGpuMatHeader () const |
|
{ |
|
GpuMat res; |
|
if (alloc_type == ALLOC_ZEROCOPY) |
|
{ |
|
void *pdev; |
|
cudaSafeCall( cudaHostGetDevicePointer( &pdev, data, 0 ) ); |
|
res = GpuMat(rows, cols, type(), pdev, step); |
|
} |
|
else |
|
cv::gpu::error("Zero-copy is not supported or memory was allocated without zero-copy flag", __FILE__, __LINE__); |
|
|
|
return res; |
|
} |
|
|
|
void cv::gpu::CudaMem::release() |
|
{ |
|
if( refcount && CV_XADD(refcount, -1) == 1 ) |
|
{ |
|
cudaSafeCall( cudaFreeHost(datastart ) ); |
|
fastFree(refcount); |
|
} |
|
data = datastart = dataend = 0; |
|
step = rows = cols = 0; |
|
refcount = 0; |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|