mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
294 lines
12 KiB
294 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
using namespace std; |
|
|
|
#if !defined(HAVE_CUDA) |
|
|
|
void cv::gpu::transformPoints(const GpuMat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
void cv::gpu::projectPoints(const GpuMat&, const Mat&, const Mat&, const Mat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
void cv::gpu::solvePnPRansac(const Mat&, const Mat&, const Mat&, const Mat&, Mat&, Mat&, bool, int, float, int, vector<int>*) { throw_nogpu(); } |
|
|
|
#else |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace transform_points |
|
{ |
|
void call(const DevMem2D_<float3> src, const float* rot, const float* transl, DevMem2D_<float3> dst, cudaStream_t stream); |
|
} |
|
|
|
namespace project_points |
|
{ |
|
void call(const DevMem2D_<float3> src, const float* rot, const float* transl, const float* proj, DevMem2D_<float2> dst, cudaStream_t stream); |
|
} |
|
|
|
namespace solve_pnp_ransac |
|
{ |
|
int maxNumIters(); |
|
|
|
void computeHypothesisScores( |
|
const int num_hypotheses, const int num_points, const float* rot_matrices, |
|
const float3* transl_vectors, const float3* object, const float2* image, |
|
const float dist_threshold, int* hypothesis_scores); |
|
} |
|
}}} |
|
|
|
using namespace ::cv::gpu::device; |
|
|
|
namespace |
|
{ |
|
void transformPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, cudaStream_t stream) |
|
{ |
|
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); |
|
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); |
|
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); |
|
|
|
// Convert rotation vector into matrix |
|
Mat rot; |
|
Rodrigues(rvec, rot); |
|
|
|
dst.create(src.size(), src.type()); |
|
transform_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), dst, stream); |
|
} |
|
} |
|
|
|
void cv::gpu::transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream) |
|
{ |
|
transformPointsCaller(src, rvec, tvec, dst, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
namespace |
|
{ |
|
void projectPointsCaller(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, cudaStream_t stream) |
|
{ |
|
CV_Assert(src.rows == 1 && src.cols > 0 && src.type() == CV_32FC3); |
|
CV_Assert(rvec.size() == Size(3, 1) && rvec.type() == CV_32F); |
|
CV_Assert(tvec.size() == Size(3, 1) && tvec.type() == CV_32F); |
|
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
|
CV_Assert(dist_coef.empty()); // Undistortion isn't supported |
|
|
|
// Convert rotation vector into matrix |
|
Mat rot; |
|
Rodrigues(rvec, rot); |
|
|
|
dst.create(src.size(), CV_32FC2); |
|
project_points::call(src, rot.ptr<float>(), tvec.ptr<float>(), camera_mat.ptr<float>(), dst,stream); |
|
} |
|
} |
|
|
|
void cv::gpu::projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream) |
|
{ |
|
projectPointsCaller(src, rvec, tvec, camera_mat, dist_coef, dst, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
namespace |
|
{ |
|
// Selects subset_size random different points from [0, num_points - 1] range |
|
void selectRandom(int subset_size, int num_points, vector<int>& subset) |
|
{ |
|
subset.resize(subset_size); |
|
for (int i = 0; i < subset_size; ++i) |
|
{ |
|
bool was; |
|
do |
|
{ |
|
subset[i] = rand() % num_points; |
|
was = false; |
|
for (int j = 0; j < i; ++j) |
|
if (subset[j] == subset[i]) |
|
{ |
|
was = true; |
|
break; |
|
} |
|
} while (was); |
|
} |
|
} |
|
|
|
// Computes rotation, translation pair for small subsets if the input data |
|
class TransformHypothesesGenerator |
|
{ |
|
public: |
|
TransformHypothesesGenerator(const Mat& object_, const Mat& image_, const Mat& dist_coef_, |
|
const Mat& camera_mat_, int num_points_, int subset_size_, |
|
Mat rot_matrices_, Mat transl_vectors_) |
|
: object(&object_), image(&image_), dist_coef(&dist_coef_), camera_mat(&camera_mat_), |
|
num_points(num_points_), subset_size(subset_size_), rot_matrices(rot_matrices_), |
|
transl_vectors(transl_vectors_) {} |
|
|
|
void operator()(const BlockedRange& range) const |
|
{ |
|
// Input data for generation of the current hypothesis |
|
vector<int> subset_indices(subset_size); |
|
Mat_<Point3f> object_subset(1, subset_size); |
|
Mat_<Point2f> image_subset(1, subset_size); |
|
|
|
// Current hypothesis data |
|
Mat rot_vec(1, 3, CV_64F); |
|
Mat rot_mat(3, 3, CV_64F); |
|
Mat transl_vec(1, 3, CV_64F); |
|
|
|
for (int iter = range.begin(); iter < range.end(); ++iter) |
|
{ |
|
selectRandom(subset_size, num_points, subset_indices); |
|
for (int i = 0; i < subset_size; ++i) |
|
{ |
|
object_subset(0, i) = object->at<Point3f>(subset_indices[i]); |
|
image_subset(0, i) = image->at<Point2f>(subset_indices[i]); |
|
} |
|
|
|
solvePnP(object_subset, image_subset, *camera_mat, *dist_coef, rot_vec, transl_vec); |
|
|
|
// Remember translation vector |
|
Mat transl_vec_ = transl_vectors.colRange(iter * 3, (iter + 1) * 3); |
|
transl_vec = transl_vec.reshape(0, 1); |
|
transl_vec.convertTo(transl_vec_, CV_32F); |
|
|
|
// Remember rotation matrix |
|
Rodrigues(rot_vec, rot_mat); |
|
Mat rot_mat_ = rot_matrices.colRange(iter * 9, (iter + 1) * 9).reshape(0, 3); |
|
rot_mat.convertTo(rot_mat_, CV_32F); |
|
} |
|
} |
|
|
|
const Mat* object; |
|
const Mat* image; |
|
const Mat* dist_coef; |
|
const Mat* camera_mat; |
|
int num_points; |
|
int subset_size; |
|
|
|
// Hypotheses storage (global) |
|
Mat rot_matrices; |
|
Mat transl_vectors; |
|
}; |
|
} |
|
|
|
void cv::gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, |
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess, |
|
int num_iters, float max_dist, int min_inlier_count, |
|
vector<int>* inliers) |
|
{ |
|
CV_Assert(object.rows == 1 && object.cols > 0 && object.type() == CV_32FC3); |
|
CV_Assert(image.rows == 1 && image.cols > 0 && image.type() == CV_32FC2); |
|
CV_Assert(object.cols == image.cols); |
|
CV_Assert(camera_mat.size() == Size(3, 3) && camera_mat.type() == CV_32F); |
|
CV_Assert(!use_extrinsic_guess); // We don't support initial guess for now |
|
CV_Assert(num_iters <= solve_pnp_ransac::maxNumIters()); |
|
|
|
const int subset_size = 4; |
|
const int num_points = object.cols; |
|
CV_Assert(num_points >= subset_size); |
|
|
|
// Unapply distortion and intrinsic camera transformations |
|
Mat eye_camera_mat = Mat::eye(3, 3, CV_32F); |
|
Mat empty_dist_coef; |
|
Mat image_normalized; |
|
undistortPoints(image, image_normalized, camera_mat, dist_coef, Mat(), eye_camera_mat); |
|
|
|
// Hypotheses storage (global) |
|
Mat rot_matrices(1, num_iters * 9, CV_32F); |
|
Mat transl_vectors(1, num_iters * 3, CV_32F); |
|
|
|
// Generate set of hypotheses using small subsets of the input data |
|
TransformHypothesesGenerator body(object, image_normalized, empty_dist_coef, eye_camera_mat, |
|
num_points, subset_size, rot_matrices, transl_vectors); |
|
parallel_for(BlockedRange(0, num_iters), body); |
|
|
|
// Compute scores (i.e. number of inliers) for each hypothesis |
|
GpuMat d_object(object); |
|
GpuMat d_image_normalized(image_normalized); |
|
GpuMat d_hypothesis_scores(1, num_iters, CV_32S); |
|
solve_pnp_ransac::computeHypothesisScores( |
|
num_iters, num_points, rot_matrices.ptr<float>(), transl_vectors.ptr<float3>(), |
|
d_object.ptr<float3>(), d_image_normalized.ptr<float2>(), max_dist * max_dist, |
|
d_hypothesis_scores.ptr<int>()); |
|
|
|
// Find the best hypothesis index |
|
Point best_idx; |
|
double best_score; |
|
minMaxLoc(d_hypothesis_scores, NULL, &best_score, NULL, &best_idx); |
|
int num_inliers = static_cast<int>(best_score); |
|
|
|
// Extract the best hypothesis data |
|
|
|
Mat rot_mat = rot_matrices.colRange(best_idx.x * 9, (best_idx.x + 1) * 9).reshape(0, 3); |
|
Rodrigues(rot_mat, rvec); |
|
rvec = rvec.reshape(0, 1); |
|
|
|
tvec = transl_vectors.colRange(best_idx.x * 3, (best_idx.x + 1) * 3).clone(); |
|
tvec = tvec.reshape(0, 1); |
|
|
|
// Build vector of inlier indices |
|
if (inliers != NULL) |
|
{ |
|
inliers->clear(); |
|
inliers->reserve(num_inliers); |
|
|
|
Point3f p, p_transf; |
|
Point2f p_proj; |
|
const float* rot = rot_mat.ptr<float>(); |
|
const float* transl = tvec.ptr<float>(); |
|
|
|
for (int i = 0; i < num_points; ++i) |
|
{ |
|
p = object.at<Point3f>(0, i); |
|
p_transf.x = rot[0] * p.x + rot[1] * p.y + rot[2] * p.z + transl[0]; |
|
p_transf.y = rot[3] * p.x + rot[4] * p.y + rot[5] * p.z + transl[1]; |
|
p_transf.z = rot[6] * p.x + rot[7] * p.y + rot[8] * p.z + transl[2]; |
|
p_proj.x = p_transf.x / p_transf.z; |
|
p_proj.y = p_transf.y / p_transf.z; |
|
if (norm(p_proj - image_normalized.at<Point2f>(0, i)) < max_dist) |
|
inliers->push_back(i); |
|
} |
|
} |
|
} |
|
|
|
#endif |
|
|
|
|
|
|