Open Source Computer Vision Library https://opencv.org/
 
 
 
 
 
 

2190 lines
86 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_vkcom.hpp"
#include "../op_webnn.hpp"
#include "../op_cann.hpp"
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
#include "opencv2/core/hal/hal.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include <iostream>
#include <numeric>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/convolution.hpp"
#include "../cuda4dnn/primitives/transpose_convolution.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
#include "cpu_kernels/convolution.hpp"
namespace cv
{
namespace dnn
{
class BaseConvolutionLayerImpl : public ConvolutionLayer
{
public:
bool fusedWeights, fusedBias;
std::vector<double> weightsMultipliers;
int groups;
BaseConvolutionLayerImpl(const LayerParams &params)
{
setParamsFrom(params);
getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations,
padMode, adjust_pads, useWinograd);
numOutput = -1;
groups = params.get<int>("group", 1);
if (kernel_size.size() == 2) {
kernel = Size(kernel_size[1], kernel_size[0]);
stride = Size(strides[1], strides[0]);
pad = Size(pads_begin[1], pads_begin[0]);
dilation = Size(dilations[1], dilations[0]);
adjustPad.height = adjust_pads[0];
adjustPad.width = adjust_pads[1];
}
for (int i = 0; i < adjust_pads.size(); i++) {
CV_Assert(adjust_pads[i] < strides[i]);
}
fusedWeights = false;
fusedBias = false;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert((inputs.size() > outputs.size() && blobs.empty()) ||
(!inputs.empty() && (blobs.size() == 1 || blobs.size() == 2)));
MatShape weightShape = blobs.empty() ? inputs[1].shape() : blobs[0].shape();
numOutput = weightShape[0];
CV_Assert(inputs[0].dims == outputs[0].dims);
if (weightShape.dims == 3)
{
kernel_size.resize(1, kernel_size[0]);
strides.resize(1, strides[0]);
dilations.resize(1, dilations[0]);
pads_begin.resize(1, pads_begin[0]);
pads_end.resize(1, pads_end[0]);
}
CV_Assert(weightShape.dims == kernel_size.size() + 2);
for (int i = 0; i < kernel_size.size(); i++) {
CV_Assert(weightShape[i + 2] == kernel_size[i]);
}
const Mat &input = inputs[0];
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16F));
for (size_t i = 0; i < outputs.size(); i++)
{
CV_Assert(inputs[i].type() == input.type());
CV_Assert(((input.dims == 3 && kernel_size.size() == 1) || inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
for (int j = 0; j < inputs[i].dims; j++) {
CV_Assert(inputs[i].size[j] == input.size[j]);
}
}
std::vector<int> inpShape;
std::vector<int> outShape;
for (int i = 2; i < inputs[0].dims; i++) {
inpShape.push_back(inputs[0].size[i]);
outShape.push_back(outputs[0].size[i]);
}
getConvPoolPaddings(inpShape, kernel_size, strides, padMode, pads_begin, pads_end);
if (pads_begin.size() == 2) {
pad = Size(pads_begin[1], pads_begin[0]);
}
fusedWeights = false;
fusedBias = false;
}
bool hasBias() const
{
return blobs.size() >= 2;
}
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
bool is1x1() const
{
return (kernel.height == 1 && kernel.width == 1) &&
(stride.height == 1 && stride.width == 1) &&
(dilation.height == 1 && dilation.width == 1);
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
if (fusedAdd) // If the Conv layer has fused Add layer, it cannot fuse other layers.
return false;
Ptr<BlankLayer> blank_layer = top.dynamicCast<BlankLayer>();
if (blank_layer)
return true;
Mat w, b;
top->getScaleShift(w, b);
if (!w.empty() || !b.empty())
{
fuseWeights(w, b);
fusedWeights = fusedWeights || !w.empty();
fusedBias = fusedBias || (hasBias() && !w.empty()) || !b.empty();
return true;
}
return false;
}
virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0;
};
//TODO: simultaneously convolution and bias addition for cache optimization
class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
{
public:
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
Mat weightsMat; // Used to store weight params. It will be used for layer fusion and memory alignment.
std::vector<float> biasvec;
std::vector<float> reluslope;
Ptr<ActivationLayer> activ;
Ptr<FastConv> fastConvImpl;
#ifdef HAVE_OPENCL
Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
std::vector<UMat> umat_blobs;
bool newActiv;
ocl4dnnFusedActiv_t activType;
float power;
#endif
#ifdef HAVE_CUDA
cuda4dnn::ConvolutionConfiguration::FusionMode cudaFusionMode;
cuda4dnn::ConvolutionConfiguration::ActivationType cudaActType;
float cuda_relu_slope, cuda_crelu_floor, cuda_crelu_ceil;
float cuda_power_exp, cuda_power_scale, cuda_power_shift;
#endif
ConvolutionLayerImpl(const LayerParams &params) : BaseConvolutionLayerImpl(params)
{
#ifdef HAVE_OPENCL
newActiv = false;
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
power = 0.f;
#endif
#ifdef HAVE_CUDA
cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE;
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
#endif
}
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
{
CV_Assert(!blobs.empty());
int dims = inpShape.size();
int inpD = dims == 5 ? inpShape[2] : 1;
int inpH = inpShape[dims - 2];
int inpW = inpShape.back();
int inpGroupCn = blobs[0].size[1];
int ksize = inpGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
1, std::multiplies<size_t>());
return shape(inpD * inpH * inpW, ksize);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
size_t ksize = kernel_size.size();
#ifdef HAVE_CUDA
if (backendId == DNN_BACKEND_CUDA)
{
/* only 1d, 2d and 3d convolutions supported */
if (ksize > 0 && ksize <= 3)
return true;
return false;
}
#endif
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
{
bool isArmTarget = preferableTarget == DNN_TARGET_CPU && isArmComputePlugin();
if (isArmTarget && blobs.empty())
return false;
if (ksize == 1)
return isArmTarget;
if (ksize == 3)
return preferableTarget != DNN_TARGET_MYRIAD && !isArmTarget;
bool isMyriad = preferableTarget == DNN_TARGET_MYRIAD || preferableTarget == DNN_TARGET_HDDL;
if (!isMyriad && blobs.empty())
return false;
return (!isMyriad || dilation.width == dilation.height);
}
#endif
if (backendId == DNN_BACKEND_OPENCV)
return ksize >= 1 && ksize <= 3;
#ifdef HAVE_VULKAN
if (backendId == DNN_BACKEND_VKCOM)
return ksize == 2;
#endif
#ifdef HAVE_WEBNN
if (backendId == DNN_BACKEND_WEBNN)
{
if (ksize != 2)
{
CV_LOG_WARNING(NULL, "WebNN only supports Conv2d.");
return false;
}
return true;
}
#endif
#ifdef HAVE_CANN
if (backendId == DNN_BACKEND_CANN)
{
if (ksize != 2)
{
CV_LOG_WARNING(NULL, "CANN supports Conv2D for now");
return false;
}
return true;
}
#endif // HAVE_CANN
return false;
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(!blobs.empty() || inputs.size() > 1);
const int* weightShape = blobs.empty() ? &inputs[1][0] : blobs[0].size.p;
CV_Assert(!hasBias() || blobs[1].total() == (size_t)weightShape[0]);
internals.clear();
CV_Assert(!inputs.empty());
CV_Assert(inputs[0].size() > 2);
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
int outCn = weightShape[0];
std::vector<int> outShape;
outShape.push_back(inputs[0][0]);
outShape.push_back(outCn);
int inpCn = inputs[0][1];
if (padMode.empty())
{
for (int i = 0; i < inpShape.size(); i++)
outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] -
dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
}
else
{
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
}
int ngroups = inpCn / weightShape[1];
if (ngroups == 0 || ngroups * weightShape[1] != inpCn)
CV_Error(Error::StsError, format("Number of input channels should "
"be multiple of %d but got %d", weightShape[1], inpCn));
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
outputs.resize(1, MatShape(outShape));
return false;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
std::vector<Mat> inputs;
inputs_arr.getMatVector(inputs);
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
// use vectorized (i.e. with intrinsics) loops without tail processing
if (!blobs.empty())
{
Mat wm = blobs[0].reshape(1, numOutput);
if ((wm.step1() % VEC_ALIGN != 0) ||
!isAligned<VEC_ALIGN * sizeof(float)>(wm.data)
)
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0.));
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
wm.copyTo(wm_aligned);
wm = wm_aligned;
}
weightsMat = wm;
}
else
{
// initialized in .forward()
weightsMat.release();
}
weightsMultipliers.assign(numOutput, 1.0);
Mat biasMat = hasBias() ? blobs[1].reshape(1, numOutput) : Mat();
biasvec.resize(numOutput+2);
if( biasMat.empty() )
{
for(int i = 0; i < numOutput; i++ )
biasvec[i] = 0.f;
}
else
{
for(int i = 0; i < numOutput; i++ )
biasvec[i] = biasMat.at<float>(i);
}
#ifdef HAVE_OPENCL
convolutionOp.release();
#endif
}
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
{
if ((!activ.empty() && !layer.empty()) || blobs.empty())
return false;
activ = layer;
if (activ.empty())
reluslope.clear();
#ifdef HAVE_OPENCL
newActiv = true;
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
if (IS_DNN_OPENCL_TARGET(preferableTarget))
{
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
if (!activ_power.empty())
{
if (activ_power->scale != 1.0f) // not supported well by implementation, #17964
{
// FIXIT no way to check number of blobs (like, eltwise input)
CV_LOG_DEBUG(NULL, "DNN/OpenCL: can't configure Power activation (scale != 1.0f)");
activ.release();
newActiv = false;
return false;
}
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
{
const int outCh = blobs[0].size[0];
fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
}
power = activ_power->power;
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
}
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
if (!activ_tanh.empty())
{
activType = OCL4DNN_CONV_FUSED_ACTIV_TANH;
}
}
#endif
#ifdef HAVE_CUDA
if (activ.empty())
{
/* setActivation was called with empty argument => reset all fusions */
cudaFusionMode = cuda4dnn::ConvolutionConfiguration::FusionMode::NONE;
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY;
}
if(IS_DNN_CUDA_TARGET(preferableTarget))
{
CV_Assert(cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE ||
cudaFusionMode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM);
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
if(!activ_relu.empty())
{
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::RELU;
cuda_relu_slope = activ_relu->negativeSlope;
}
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
if(!activ_relu6.empty())
{
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::CLIPPED_RELU;
cuda_crelu_floor = activ_relu6->minValue;
cuda_crelu_ceil = activ_relu6->maxValue;
}
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
if (!activ_power.empty())
{
cuda_power_scale = activ_power->scale;
cuda_power_shift = activ_power->shift;
cuda_power_exp = activ_power->power;
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::POWER;
}
Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
if(!activ_tanh.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::TANH;
Ptr<SigmoidLayer> activ_sigmoid = activ.dynamicCast<SigmoidLayer>();
if(!activ_sigmoid.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SIGMOID;
Ptr<SwishLayer> activ_swish = activ.dynamicCast<SwishLayer>();
if(!activ_swish.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::SWISH;
Ptr<MishLayer> activ_mish = activ.dynamicCast<MishLayer>();
if(!activ_mish.empty())
cudaActType = cuda4dnn::ConvolutionConfiguration::ActivationType::MISH;
if (cudaActType == cuda4dnn::ConvolutionConfiguration::ActivationType::IDENTITY)
{
/* no activation fused */
activ.reset();
}
else
{
/* activation was fused */
if (cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE) /* no previous fusion */
cudaFusionMode = ConvolutionConfiguration::FusionMode::ACTIVATION; /* now activation */
else if (cudaFusionMode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM) /* previously eltwise was fused */
cudaFusionMode = ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION; /* now activation on eltwise output */
}
}
#endif
fusedActivation = !activ.empty();
return fusedActivation;
}
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
{
if (fusedAdd) // If the Conv layer has fused Add layer, it cannot fuse other layers.
return false;
#ifdef HAVE_CUDA
if(IS_DNN_CUDA_TARGET(preferableTarget))
{
Ptr<EltwiseLayer> eltwise = top.dynamicCast<EltwiseLayer>();
Ptr<NaryEltwiseLayer> naryEltwise = top.dynamicCast<NaryEltwiseLayer>();
if (!eltwise.empty() || !naryEltwise.empty())
{
/* we also need to check that the eltwise input does not require shortcut mechanism
* it's difficult to verify it here but we hope that `fuseLayers` has done the check already
*/
if (cudaFusionMode == ConvolutionConfiguration::FusionMode::NONE)
{
/* no previous fusion */
cudaFusionMode = ConvolutionConfiguration::FusionMode::ELTWISE_SUM; /* now eltwise */
return true;
}
else if(cudaFusionMode == ConvolutionConfiguration::FusionMode::ACTIVATION)
{
/* previously an activation was fused */
cudaFusionMode = ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM;
return true;
}
return false;
}
}
#endif
return BaseConvolutionLayerImpl::tryFuse(top);
}
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
{
// Convolution weights have OIHW data layout. Parameters fusion in case of
// (conv(I) + b1 ) * w + b2
// means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
const int outCn = weightsMat.size[0];
Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at<float>(0))) : w_;
Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at<float>(0))) : b_;
CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
if (!w.empty())
{
// Keep origin weights unchanged.
if (weightsMat.data == blobs[0].data)
weightsMat = weightsMat.clone();
Mat originWeights = blobs[0].reshape(1, outCn);
for (int i = 0; i < outCn; ++i)
{
double wi = w.at<float>(i);
weightsMultipliers[i] *= wi;
cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
biasvec[i] *= wi;
}
}
if (!b.empty())
{
for (int i = 0; i < outCn; ++i)
biasvec[i] += b.at<float>(i);
}
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
}
virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs, std::vector<Ptr<BackendWrapper> > &outputs) CV_OVERRIDE
{
#ifdef HAVE_VULKAN
int activationType = transFusedActivType(activ);
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
Ptr<VkComBackendWrapper> inputWrap = inputs[0].dynamicCast<VkComBackendWrapper>();
Ptr<VkComBackendWrapper> outputWrap = outputs[0].dynamicCast<VkComBackendWrapper>();
CV_Assert(inputWrap && outputWrap);
MatShape inpShape = shape(*inputWrap->getMat());
MatShape outShape = shape(*outputWrap->getMat());
CV_Assert(inpShape.size() == 4 && inpShape.size() == outShape.size());
if (activationType == -1)
{
CV_LOG_WARNING(NULL, "Unsupported fused Active type in Conv layer!!!");
return Ptr<BackendNode>();
}
const int inpGroupCn = blobs[0].size[1];
int ngroups = inpShape[1] / inpGroupCn;
CV_Assert(outShape[1] % ngroups == 0);
if (ngroups != 1)
return Ptr<BackendNode>();
Mat weightVK;
if (fusedWeights)
{
weightsMat.copyTo(weightVK); // to handle the case of isContinuous() == false
weightVK = weightVK.reshape(1, blobs[0].dims, blobs[0].size);
}
else
weightVK = blobs[0];
CV_Assert(weightVK.isContinuous());
CV_Assert(pads_begin.size() == 2);
CV_Assert(fusedAdd == false && "Vulkan Backend can not support the Conv_Add optimization.");
Ptr<vkcom::OpBase> op(new vkcom::OpConv(weightVK, biasvec, activationType, ngroups, outShape[1], inpShape[1],
kernel.height, kernel.width, stride.height, stride.width,
dilation.height, dilation.width, pads_begin[1], pads_begin[0]));
return Ptr<BackendNode>(new VkComBackendNode(inputs, op, outputs));
#endif // HAVE_VULKAN
return Ptr<BackendNode>();
}
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert(!blobs.empty());
CV_Assert(inputs.size() == 1);
CV_Assert(nodes.size() == 1);
bool has_bias = hasBias() || fusedBias;
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
const auto shape_x = x->host->size; // [b, c, h, w]
const int filter_out_channel = blobs[0].size[1];
const int groups = shape_x[1] / filter_out_channel;
// create operator
auto op = std::make_shared<ge::op::Conv2D>(name);
// set attributes
op->set_attr_strides(ge::Operator::OpListInt(
{1, 1, (int64_t)strides[0], (int64_t)strides[1]}
));
// recalculate pads in case of "SAME" padMode with odd pads
// since in 'getConvPoolPaddings' pads are divided equally
// leading to the loss of one pad
if (padMode == "SAME")
{
for (int i = 0; i < pads_begin.size(); i++) {
if (strides[i] <= kernel_size[i])
{
int pads_at_i = kernel_size[i] - 1 - (shape_x[i+2] - 1 + strides[i]) % strides[i];
pads_begin[i] = pads_at_i / 2;
// if odd, add extra padding to the end for SAME_UPPER
// or to the beginning for SAME_LOWER. Since here we cannot
// identity SAME_UPPER and SAME_LOWER, extra padding is always
// added to the end.
pads_end[i] = pads_at_i - pads_begin[i];
}
}
}
op->set_attr_pads(ge::Operator::OpListInt(
{(int64_t)pads_begin[1], (int64_t)pads_end[1], (int64_t)pads_begin[0], (int64_t)pads_end[0]}
));
op->set_attr_dilations(ge::Operator::OpListInt(
{1, 1, (int64_t)dilations[0], (int64_t)dilations[1]}
));
op->set_attr_groups(groups);
op->set_attr_data_format("NCHW");
// set inputs
// set inputs : x
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
// set inputs : weight
const Mat& w_mat = blobs[0];
auto op_const_weight = std::make_shared<CannConstOp>(w_mat.data, w_mat.type(), shape(w_mat), cv::format("%s_w", name.c_str()));
op->set_input_filter(*(op_const_weight->getOp()));
op->update_input_desc_filter(*(op_const_weight->getTensorDesc()));
// set inputs : bias
if (has_bias)
{
int out_channel = blobs[0].size[0];
Mat b_mat({out_channel}, CV_32F, &biasvec[0]);
std::vector<int> bias_shape{out_channel};
auto op_const_bias = std::make_shared<CannConstOp>(b_mat.data, b_mat.type(), bias_shape, cv::format("%s_b", name.c_str()));
op->set_input_bias(*(op_const_bias->getOp()));
op->update_input_desc_bias(*(op_const_bias->getTensorDesc()));
}
// set outputs
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert(!blobs.empty());
CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1);
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<size_t> dims = ieInpNode.get_shape();
CV_Check(dims.size(), dims.size() >= 3 && dims.size() <= 5, "");
ov::Output<ov::Node> ieWeights;
if (nodes.size() > 1)
ieWeights = nodes[1].dynamicCast<InfEngineNgraphNode>()->node;
const int inpCn = dims[1];
const int inpGroupCn = nodes.size() > 1 ? ieWeights.get_shape()[1] : blobs[0].size[1];
const int group = inpCn / inpGroupCn;
std::vector<size_t> kernel_shape;
if (group != 1)
{
kernel_shape.push_back(group);
}
kernel_shape.push_back(numOutput / group);
kernel_shape.push_back(inpCn / group);
std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape));
if (nodes.size() == 1)
{
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, blobs[0].data);
if (fusedWeights)
{
if (weightsMat.isContinuous())
{
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, weightsMat.data);
}
else
{
Mat newWeights;
Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput);
cvWeights.copyTo(newWeights);
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, newWeights.data);
}
}
}
else
{
auto shape = std::make_shared<ov::op::v0::Constant>(ov::element::i64,
ov::Shape{kernel_shape.size()}, std::vector<int64_t>(kernel_shape.begin(), kernel_shape.end()));
ieWeights = std::make_shared<ov::op::v1::Reshape>(ieWeights, shape, true);
}
ov::op::PadType pad_type = ov::op::PadType::EXPLICIT;
if (!padMode.empty())
pad_type = padMode == "VALID" ? ov::op::PadType::VALID : ov::op::PadType::SAME_UPPER;
std::shared_ptr<ov::Node> conv_node;
if (group != 1) {
conv_node = std::make_shared<ov::op::v1::GroupConvolution>(
ieInpNode, ieWeights,
ov::Strides(strides),
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
ov::Strides(dilations),
pad_type);
} else {
conv_node = std::make_shared<ov::op::v1::Convolution>(
ieInpNode, ieWeights,
ov::Strides(strides),
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_end.begin(), pads_end.end())),
ov::Strides(dilations),
pad_type);
}
if (hasBias() || fusedBias || nodes.size() == 3)
{
std::vector<size_t> shape(conv_node->get_shape().size(), 1);
shape[1] = conv_node->get_shape()[1];
std::shared_ptr<ov::Node> bias;
if (nodes.size() == 3)
{
auto bias_shape = std::make_shared<ov::op::v0::Constant>(ov::element::i64,
ov::Shape{shape.size()}, std::vector<int64_t>(shape.begin(), shape.end()));
bias = std::make_shared<ov::op::v1::Reshape>(nodes[2].dynamicCast<InfEngineNgraphNode>()->node, bias_shape, true);
}
else
{
bias = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape(shape), biasvec.data());
}
auto conv_bias = std::make_shared<ov::op::v1::Add>(conv_node, bias, ov::op::AutoBroadcastType::NUMPY);
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_bias));
}
return Ptr<BackendNode>(new InfEngineNgraphNode(conv_node));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert(!blobs.empty());
CV_Assert_N(inputs.size() >= 1, nodes.size() >= 1);
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnInpOperand = node->operand;
auto& webnnGraphBuilder = node->net->builder;
ml::Operand webnnWeights = nodes.size() > 1 ? nodes[1].dynamicCast<WebnnBackendNode>()->operand : nullptr;
if (nodes.size() > 1)
CV_Assert(webnnWeights);
const int inpCn = weightsMat.total()/(kernel_size[0]*kernel_size[1]*numOutput);
const int group = groups;
const int inpGroupCn = inpCn / group;
std::vector<int32_t> kernel_shape;
if (group != 1)
{
kernel_shape.push_back(group);
}
kernel_shape.push_back(numOutput / group);
kernel_shape.push_back(inpGroupCn);
std::copy(kernel_size.begin(), kernel_size.end(), back_inserter(kernel_shape));
if (nodes.size() == 1)
{
webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(blobs[0]), blobs[0].data, blobs[0].total()*blobs[0].elemSize(), ml::OperandType::Float32);
if (fusedWeights)
{
if (weightsMat.isContinuous())
{
webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(weightsMat), weightsMat.data, weightsMat.total()*weightsMat.elemSize(), ml::OperandType::Float32);
}
else
{
Mat newWeights;
Mat cvWeights = weightsMat.colRange(0, blobs[0].total() / numOutput);
cvWeights.copyTo(newWeights);
webnnWeights = webnn::BuildConstant(webnnGraphBuilder, webnn::getShape(newWeights), newWeights.data, newWeights.total()*newWeights.elemSize(), ml::OperandType::Float32);
}
}
}
else
{
webnnWeights = webnnGraphBuilder.Reshape(webnnWeights, kernel_shape.data(), kernel_shape.size());
}
ml::AutoPad pad_type = ml::AutoPad::Explicit;
if (!padMode.empty())
pad_type = padMode == "VALID" ? ml::AutoPad::Explicit : ml::AutoPad::SameUpper;
ml::Conv2dOptions options = {};
options.groups = group;
options.autoPad = pad_type;
std::vector<int32_t> Strides(strides.begin(), strides.end());
if (!Strides.empty())
{
options.stridesCount = Strides.size();
options.strides = Strides.data();
}
std::vector<int32_t> Padding;
if (padMode.empty())
{
Padding = {static_cast<int32_t>(pads_begin[0]),
static_cast<int32_t>(pads_end[0]),
static_cast<int32_t>(pads_begin[1]),
static_cast<int32_t>(pads_end[1])};
}
else if (padMode == "VALID")
{
Padding = {0, 0, 0, 0};
}
if (!Padding.empty())
{
options.paddingCount = Padding.size();
options.padding = Padding.data();
}
std::vector<int32_t> Dilations(dilations.begin(), dilations.end());
if (!Dilations.empty())
{
options.dilationsCount = Dilations.size();
options.dilations = Dilations.data();
}
ml::Operand operand = webnnGraphBuilder.Conv2d(webnnInpOperand, webnnWeights, &options);
// ml::Operand result = operand;
if (hasBias() || fusedBias || nodes.size() == 3)
{
ml::Operand webnnBias = nullptr;
if (nodes.size() == 3)
{
std::vector<int32_t> bias_shape = {1, numOutput, 1, 1};
webnnBias = webnnGraphBuilder.Reshape(nodes[2].dynamicCast<WebnnBackendNode>()->operand, bias_shape.data(), bias_shape.size());
}
else
{
webnnBias = webnn::BuildConstant(webnnGraphBuilder, {1, numOutput, 1, 1}, biasvec.data(), (numOutput) * sizeof(float), ml::OperandType::Float32);
}
operand = webnnGraphBuilder.Add(operand, webnnBias);
}
return Ptr<BackendNode>(new WebnnBackendNode(operand));
}
#endif // HAVE_WEBNN
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
if (kernel_size.size() != 2)
{
// no OpenCL optimizations, see .supportedBacked()
return false;
}
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16F);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
CV_Assert(outputs.size() == 1);
for (int i = 0; i < inputs.size(); ++i)
CV_Assert(inputs[i].u != outputs[0].u);
if (blobs.empty())
{
size_t n = inputs.size() - 1;
umat_blobs.resize(n);
for (size_t i = 0; i < n; i++)
{
CV_Assert(!use_half); // TODO: not implemented
inputs[i + 1].copyTo(umat_blobs[i]);
}
inputs.resize(1);
}
if (umat_blobs.empty())
{
size_t n = blobs.size();
umat_blobs.resize(n);
for (size_t i = 0; i < n; i++)
{
if (use_half)
blobs[i].convertTo(umat_blobs[i], CV_16F);
else
blobs[i].copyTo(umat_blobs[i]);
}
}
if (convolutionOp.empty() || blobs.empty())
{
OCL4DNNConvConfig config;
config.in_shape = shape(inputs[0]);
config.out_shape = shape(outputs[0]);
config.kernel = kernel;
// pads_begin: 0 - pad_top, 1 - pad_left
// pads_end: 0 - pad_bottom, 1 - pad_right
std::vector<int> pads = {int(pads_begin[0]), int(pads_end[0]), int(pads_begin[1]), int(pads_end[1])};
config.pads = pads;
config.stride = stride;
config.dilation = dilation;
if (inputs[0].dims != 4 && inputs[0].dims != (blobs.empty() ? umat_blobs[0].dims : blobs[0].dims))
{
static bool bypassCheck = utils::getConfigurationParameterBool("OPENCV_OCL4DNN_CONVOLUTION_IGNORE_INPUT_DIMS_4_CHECK", false);
if (!bypassCheck)
{
CV_LOG_ERROR(NULL, "DNN/OpenCL: Unsupported configuration: inputs[0].dims=" << inputs[0].dims << " umat_blobs[0].dims=" << umat_blobs[0].dims
<< ". Consider reporting complete reproducer to https://github.com/opencv/opencv/issues/20833."
<< " You can skip this check temporary through OPENCV_OCL4DNN_CONVOLUTION_IGNORE_INPUT_DIMS_4_CHECK=1"
);
return false;
}
}
config.group = inputs[0].size[1] / (blobs.empty() ? umat_blobs[0].size[1] : blobs[0].size[1]);
if (config.group < 1) // config.group == 0 causes div by zero in ocl4dnn code
{
CV_LOG_WARNING(NULL, "DNN/OpenCL: Unsupported config.group=" << config.group
<< ". Consider reporting complete reproducer to https://github.com/opencv/opencv/issues/20833"
);
return false;
}
config.bias_term = umat_blobs.size() == 2;
config.use_half = use_half;
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
}
int outCn = umat_blobs[0].size[0];
reluslope.clear();
if( activ )
{
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
if( !activ_relu.empty() )
{
reluslope.assign(outCn+2, activ_relu->negativeSlope);
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU;
}
Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
if( !activ_relu6.empty() )
{
reluslope.resize(2);
reluslope[0] = activ_relu6->minValue;
reluslope[1] = activ_relu6->maxValue;
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU6;
}
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
if( !activ_chprelu.empty() )
{
const Mat& m = activ_chprelu->blobs[0];
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
const float* mdata = m.ptr<float>();
reluslope.resize(outCn+2);
std::copy(mdata, mdata + outCn, reluslope.begin());
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU;
}
}
if (fusedWeights)
{
if (use_half)
weightsMat.convertTo(umat_blobs[0], CV_16F);
else
weightsMat.copyTo(umat_blobs[0]);
fusedWeights = false;
}
if (fusedBias)
{
if ( umat_blobs.size() < 2 )
umat_blobs.resize(2);
if (use_half)
Mat(biasvec, true).convertTo(umat_blobs[1], CV_16F);
else
Mat(biasvec, true).copyTo(umat_blobs[1]);
convolutionOp->setBias(true);
fusedBias = false;
}
if ( newActiv )
{
if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU )
{
CV_Assert(!reluslope.empty());
convolutionOp->setActivReLU(true, reluslope[0]);
}
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU)
{
CV_Assert(!reluslope.empty());
convolutionOp->setActivPReLU(true, reluslope);
}
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER)
{
convolutionOp->setActivPower(true, power);
}
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_TANH)
{
convolutionOp->setActivTanh(true);
}
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU6)
{
convolutionOp->setActivReLU6(true, reluslope[0], reluslope[1]);
}
else
{
convolutionOp->setActivReLU(false, 0);
convolutionOp->setActivPReLU(false, reluslope);
convolutionOp->setActivPower(false, 1.f);
convolutionOp->setActivTanh(false);
convolutionOp->setActivReLU6(false, 0, 0);
}
newActiv = false;
}
UMat& inpMat = inputs[0];
UMat& outMat = outputs[0];
int batch_size = inpMat.size[0];
return convolutionOp->Forward(inpMat,
inputs.size() == 2 ? inputs[1] : UMat(),
umat_blobs[0],
umat_blobs.size() > 1 ? umat_blobs[1] : UMat(),
outMat,
batch_size);
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16F)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
int outCn = blobs.empty() ? inputs[1].size[0] : blobs[0].size[0];
// Need to align non-const blobs
bool variableWeight = false;
if (blobs.empty())
{
variableWeight = true;
Mat wm = inputs[1].reshape(1, outCn);
if (wm.data != weightsMat.data)
{
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
Mat wm_buffer = Mat(numOutput, newcols, wm.type());
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
wm_padding.setTo(Scalar::all(0.));
weightsMat = wm_buffer.colRange(0, wm.cols);
wm.copyTo((const Mat&)weightsMat);
if (inputs.size() > 2)
{
Mat biasMat = inputs[2].reshape(1, outCn);
biasMat.col(0).copyTo(biasvec);
}
biasvec.resize(outCn + 2, 0);
}
}
/*if (inputs[0].dims > 3) {
printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3],
kernel.width, kernel.height, pad.width, pad.height,
stride.width, stride.height, dilation.width, dilation.height);
}
else {
printf("conv %s: input (%d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2],
kernel.width, kernel.height, pad.width, pad.height,
stride.width, stride.height, dilation.width, dilation.height);
}*/
int inpGroupCn = blobs.empty() ? inputs[1].size[1] : blobs[0].size[1];
CV_Assert_N(inputs.size() >= (size_t)1, inputs[0].size[1] % inpGroupCn == 0,
outputs.size() == 1, inputs[0].data != outputs[0].data);
int ngroups = inputs[0].size[1] / inpGroupCn;
CV_Assert(outputs[0].size[1] % ngroups == 0);
reluslope.clear();
if( activ )
{
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
if( !activ_relu.empty() )
{
reluslope.assign(outCn+2, activ_relu->negativeSlope);
}
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
if( !activ_chprelu.empty() )
{
const Mat& m = activ_chprelu->blobs[0];
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
const float* mdata = m.ptr<float>();
reluslope.resize(outCn+2);
std::copy(mdata, mdata + outCn, reluslope.begin());
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
}
}
{
int nstripes = std::max(getNumThreads(), 1);
int conv_dim = CONV_2D;
if (inputs[0].dims == 3)
conv_dim = CONV_1D;
if (inputs[0].dims == 5)
conv_dim = CONV_3D;
// Initialization of FastCovn2d, pack weight.
if (!fastConvImpl || variableWeight)
{
int K = outputs[0].size[1];
int C = inputs[0].size[1];
// Winograd only works when input h and w >= 12.
bool canUseWinograd = useWinograd && conv_dim == CONV_2D && inputs[0].size[2] >= 12 && inputs[0].size[3] >= 12;
CV_Assert(outputs[0].size[1] % ngroups == 0);
fastConvImpl = initFastConv(weightsMat, &biasvec[0], ngroups, K, C, kernel_size, strides,
dilations, pads_begin, pads_end, conv_dim,
preferableTarget == DNN_TARGET_CPU_FP16, canUseWinograd);
// This is legal to release weightsMat here as this is not used anymore for
// OpenCV inference. If network needs to be reinitialized (new shape, new backend)
// a new version of weightsMat is created at .finalize() from original weights
weightsMat.release();
}
runFastConv(inputs[0], outputs[0], fastConvImpl, nstripes, activ, reluslope, fusedAdd);
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
// TODO: extract bias from inputs and pass it
CV_Assert(inputs.size() == 1 || inputs.size() == 2);
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
auto input_shape = input_wrapper->getShape();
CV_Assert(outputs.size() == 1);
auto output_wrapper = outputs[0].dynamicCast<CUDABackendWrapper>();
auto output_shape = output_wrapper->getShape();
CV_Assert(!blobs.empty());
const auto output_feature_maps = blobs[0].size[0];
const auto input_feature_maps = input_shape[1];
const auto input_feature_maps_per_group = blobs[0].size[1];
const auto groups = input_feature_maps / input_feature_maps_per_group;
ConvolutionConfiguration config;
if (input_shape.size() == 3)
{
// Conv1D
// We add an extra dim for input and output tensors, because CuDNN doesn't support convolution with 3D tensors
input_shape.insert(std::end(input_shape) - 1, 1);
output_shape.insert(std::end(output_shape) - 1, 1);
// Do the similar thing for the other parameters
pads_begin.insert(std::begin(pads_begin), 0);
pads_end.insert(std::begin(pads_end), 0);
strides.insert(std::begin(strides), 1);
dilations.insert(std::begin(dilations), 1);
kernel_size.insert(std::begin(kernel_size), 1);
}
config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size));
config.dilations.assign(std::begin(dilations), std::end(dilations));
config.strides.assign(std::begin(strides), std::end(strides));
if (padMode.empty())
{
config.padMode = ConvolutionConfiguration::PaddingMode::MANUAL;
config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin));
config.pads_end.assign(std::begin(pads_end), std::end(pads_end));
}
else if (padMode == "VALID")
{
config.padMode = ConvolutionConfiguration::PaddingMode::VALID;
}
else if (padMode == "SAME")
{
config.padMode = ConvolutionConfiguration::PaddingMode::SAME;
}
else
{
CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by ConvolutionLayer");
}
config.input_shape.assign(std::begin(input_shape), std::end(input_shape));
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
config.groups = groups;
config.fusion_mode = cudaFusionMode;
config.activation_type = cudaActType;
config.relu_negative_slope = cuda_relu_slope;
config.crelu_floor = cuda_crelu_floor;
config.crelu_ceil = cuda_crelu_ceil;
config.power_exp = cuda_power_exp;
config.power_scale = cuda_power_scale;
config.power_shift = cuda_power_shift;
Mat filtersMat = fusedWeights ? weightsMat : blobs[0];
Mat biasMat = (hasBias() || fusedBias) ? Mat(output_feature_maps, 1, CV_32F, biasvec.data()) : Mat();
if (countNonZero(biasMat) == 0)
biasMat = Mat();
return make_cuda_node<cuda4dnn::ConvolutionOp>(
preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat);
}
#endif
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_Assert(inputs.size() == outputs.size() || inputs.size() == outputs.size() + blobs.size());
int64 flops = 0;
int karea = std::accumulate(kernel_size.begin(), kernel_size.end(), 1, std::multiplies<size_t>());
for (int i = 0; i < outputs.size(); i++)
{
flops += total(outputs[i])*(CV_BIG_INT(2)*karea*inputs[i][1] + 1);
}
return flops;
}
};
class DeConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
{
public:
Mat weightsMat, biasesMat;
UMat umat_weights;
UMat umat_biases;
DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {}
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
{
int dims = inpShape.size();
int inpD = dims == 5 ? inpShape[2] : 1;
int inpH = inpShape[dims - 2];
int inpW = inpShape.back();
int outCn = outShape[1];
int outGroupCn = outCn / groups;
int ksize = outGroupCn * std::accumulate(kernel_size.begin(), kernel_size.end(),
1, std::multiplies<size_t>());
return shape(ksize, inpD * inpH * inpW);
}
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
if (backendId == DNN_BACKEND_CUDA)
{
/* only deconvolution 2d and 3d supported */
if (kernel_size.size() == 2 || kernel_size.size() == 3)
return true;
return false;
}
#ifdef HAVE_INF_ENGINE
const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW or IODHW layout
const int group = numOutput / outGroupCn;
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
return group == 1;
}
#endif // HAVE_INF_ENGINE
{
return backendId == DNN_BACKEND_CUDA ||
(kernel_size.size() == 2 && backendId == DNN_BACKEND_OPENCV) ||
(kernel_size.size() == 2 && backendId == DNN_BACKEND_CANN);
}
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() != 0);
int outCn = numOutput;
if (outCn < 0) {
CV_Assert(inputs.size() > 1 || !blobs.empty());
MatShape weightShape = blobs.empty() ? inputs[1] : blobs[0].shape();
outCn = weightShape[1]*groups;
}
std::vector<int> outShape;
outShape.push_back(inputs[0][0]); // batch
outShape.push_back(outCn);
if (padMode.empty())
{
for (int i = 0; i < kernel_size.size(); i++)
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
}
else if (padMode == "VALID")
{
for (int i = 0; i < kernel_size.size(); i++)
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]);
}
else if (padMode == "SAME")
{
for (int i = 0; i < kernel_size.size(); i++)
outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]);
}
else
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
CV_Assert(outCn % blobs[0].size[1] == 0);
int inpCn = inputs[0][1];
CV_Assert(inpCn % groups == 0 && outCn % groups == 0);
CV_Assert(blobs[0].size[0] == inpCn);
outputs.resize(1, MatShape(outShape));
if (!is1x1())
internals.push_back(computeColRowShape(inputs[0], outputs[0]));
return false;
}
void getTypes(const std::vector<MatType> &inputs,
const int requiredOutputs,
const int requiredInternals,
std::vector<MatType> &outputs,
std::vector<MatType> &internals) const CV_OVERRIDE
{
CV_Assert(inputs.size() > 0);
outputs.assign(requiredOutputs, inputs[0]);
internals.assign(requiredInternals, CV_32F);
}
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() > 1 || !blobs.empty());
MatShape weightShape = blobs.empty() ? inputs[1].shape() : blobs[0].shape();
numOutput = weightShape[1]*groups;
std::vector<int> inpShape;
std::vector<int> outShape;
for (int i = 2; i < inputs[0].dims; i++) {
inpShape.push_back(inputs[0].size[i]);
outShape.push_back(outputs[0].size[i]);
}
getConvPoolPaddings(outShape, kernel_size, strides, padMode, pads_begin, pads_end);
if (pads_begin.size() == 2) {
for (int i = 0; i < pads_begin.size(); i++) {
if (pads_begin[i] != pads_end[i])
CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer");
}
pad = Size(pads_begin[1], pads_begin[0]);
}
weightsMultipliers.assign(numOutput, 1.0);
if (weightsMat.empty() && !blobs.empty()) {
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
}
if (biasesMat.empty() && blobs.size() >= 2) {
biasesMat = blobs[1].reshape(1, numOutput);
}
}
void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
{
Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at<float>(0))) : w_;
Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at<float>(0))) : b_;
CV_Assert_N(!weightsMat.empty(),
w.empty() || numOutput == w.total(),
b.empty() || numOutput == b.total());
if (!w.empty())
{
transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
weightsMat = weightsMat.reshape(1, numOutput);
for (int i = 0; i < numOutput; ++i)
{
double wi = w.at<float>(i);
weightsMultipliers[i] *= wi;
cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i));
biasesMat.at<float>(i) *= wi;
}
weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]);
}
if (!b.empty())
{
cv::add(biasesMat, b.reshape(1, numOutput), biasesMat);
}
}
class MatMulInvoker : public ParallelLoopBody
{
public:
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
{
a_ = &a;
b_ = &b;
c_ = &c;
nstripes_ = nstripes;
useAVX = checkHardwareSupport(CPU_AVX);
useAVX2 = checkHardwareSupport(CPU_AVX2);
useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
useRVV = checkHardwareSupport(CPU_RVV);
useLASX = checkHardwareSupport(CPU_LASX);
}
void operator()(const Range& range_) const CV_OVERRIDE
{
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
int mmax = a_->rows;
int nmax = range.end - range.start;
int kmax = a_->cols;
int m, n, k;
const float* aptr = a_->ptr<float>();
const float* bptr = b_->ptr<float>() + range.start;
float* cptr = c_->ptr<float>() + range.start;
size_t astep = a_->step1();
size_t bstep = b_->step1();
size_t cstep = c_->step1();
#if CV_TRY_AVX512_SKX
if( useAVX512 )
opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
#if CV_TRY_AVX2
if( useAVX2 )
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
#if CV_TRY_AVX
if( useAVX )
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
#if CV_TRY_RVV && CV_RVV
if( useRVV ) {
opt_RVV::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
}
else
#endif
#if CV_TRY_LASX
if( useLASX )
opt_LASX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
else
#endif
for( m = 0; m < mmax; m += 2 )
{
float* dst0 = cptr + cstep*m;
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
const float* aptr0 = aptr + astep*m;
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
for( n = 0; n < nmax; n++ )
{
dst0[n] = 0.f;
dst1[n] = 0.f;
}
for( k = 0; k < kmax; k += 4 )
{
float alpha00 = aptr0[k];
float alpha01 = aptr1[k];
float alpha10 = 0.f, alpha11 = 0.f;
float alpha20 = 0.f, alpha21 = 0.f;
float alpha30 = 0.f, alpha31 = 0.f;
const float* bptr0 = bptr + k*bstep;
const float* bptr1 = bptr0;
const float* bptr2 = bptr0;
const float* bptr3 = bptr0;
if( k+1 < kmax )
{
alpha10 = aptr0[k+1];
alpha11 = aptr1[k+1];
bptr1 = bptr0 + bstep;
if( k+2 < kmax )
{
alpha20 = aptr0[k+2];
alpha21 = aptr1[k+2];
bptr2 = bptr1 + bstep;
if( k+3 < kmax )
{
alpha30 = aptr0[k+3];
alpha31 = aptr1[k+3];
bptr3 = bptr2 + bstep;
}
}
}
n = 0;
#if CV_SIMD128
v_float32x4 a00 = v_setall_f32(alpha00);
v_float32x4 a01 = v_setall_f32(alpha01);
v_float32x4 a10 = v_setall_f32(alpha10);
v_float32x4 a11 = v_setall_f32(alpha11);
v_float32x4 a20 = v_setall_f32(alpha20);
v_float32x4 a21 = v_setall_f32(alpha21);
v_float32x4 a30 = v_setall_f32(alpha30);
v_float32x4 a31 = v_setall_f32(alpha31);
for( ; n <= nmax - 4; n += 4 )
{
v_float32x4 d0 = v_load(dst0 + n);
v_float32x4 d1 = v_load(dst1 + n);
v_float32x4 b0 = v_load(bptr0 + n);
v_float32x4 b1 = v_load(bptr1 + n);
v_float32x4 b2 = v_load(bptr2 + n);
v_float32x4 b3 = v_load(bptr3 + n);
// TODO try to improve pipeline width
d0 = v_fma(b0, a00, d0);
d1 = v_fma(b0, a01, d1);
d0 = v_fma(b1, a10, d0);
d1 = v_fma(b1, a11, d1);
d0 = v_fma(b2, a20, d0);
d1 = v_fma(b2, a21, d1);
d0 = v_fma(b3, a30, d0);
d1 = v_fma(b3, a31, d1);
v_store(dst0 + n, d0);
v_store(dst1 + n, d1);
}
#endif
for( ; n < nmax; n++ )
{
float b0 = bptr0[n];
float b1 = bptr1[n];
float b2 = bptr2[n];
float b3 = bptr3[n];
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
dst0[n] = d0;
dst1[n] = d1;
}
}
}
}
const Mat *a_, *b_;
Mat* c_;
int nstripes_;
bool useAVX;
bool useAVX2;
bool useAVX512;
bool useRVV;
bool useLASX;
};
class Col2ImInvoker : public cv::ParallelLoopBody
{
public:
const float* data_col;
const float* biasvec;
int channels, height, width;
int kernel_h, kernel_w;
int pad_h, pad_w;
int stride_h, stride_w;
float* data_im;
int height_col, width_col;
int nstripes;
bool is1x1;
Col2ImInvoker()
: data_col(0), biasvec(0), channels(0), height(0), width(0),
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
height_col(0), width_col(0), nstripes(0), is1x1(0)
{}
static void run(const float* data_col,
int channels, int height, int width,
int kernel_h, int kernel_w,
int pad_h, int pad_w,
int stride_h, int stride_w,
int height_col, int width_col,
float* data_im,
const float* biasvec,
bool is1x1)
{
const int nstripes = getNumThreads();
Col2ImInvoker t;
t.data_col = data_col;
t.data_im = data_im;
t.channels = channels; t.height = height; t.width = width;
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
t.pad_h = pad_h; t.pad_w = pad_w;
t.stride_h = stride_h; t.stride_w = stride_w;
t.height_col = height_col;
t.width_col = width_col;
t.nstripes = nstripes;
t.is1x1 = is1x1;
t.biasvec = biasvec;
parallel_for_(Range(0, nstripes), t, nstripes);
}
virtual void operator ()(const Range &r) const CV_OVERRIDE
{
const float* data_col_ = data_col;
float* data_im_ = data_im;
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
int coeff_w = (1 - stride_w * height_col * width_col);
size_t total = (size_t)channels * height * width;
size_t stripeSize = (total + nstripes - 1)/nstripes;
size_t startIndex = r.start*stripeSize;
size_t endIndex = std::min(r.end*stripeSize, total);
int w = (int)(startIndex % width + pad_w);
int h = (int)((startIndex / width) % height + pad_h);
int c = (int)(startIndex / (width * height));
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
int h_col_end = std::min(h / stride_h + 1, height_col);
int plane_size_col = height_col * width_col;
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
bool is1x1_ = is1x1;
const float* biasvec_ = biasvec;
for (size_t index = startIndex; index < endIndex; index++)
{
// compute the start and end of the output
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
int w_col_end = std::min(w / stride_w + 1, width_col);
float val;
if( is1x1_ )
val = data_im_[index];
else
{
val = 0.f;
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
}
}
}
data_im_[index] = val + biasvec_[c];
offset += plane_size_col;
if( ++w >= width + pad_w )
{
w = (int)((index + 1)% width + pad_w);
h = (int)(((index + 1) / width) % height + pad_h);
c = (int)((index + 1) / (width * height));
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
h_col_end = std::min(h / stride_h + 1, height_col);
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
}
}
}
};
#ifdef HAVE_OPENCL
bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
std::vector<UMat> internals;
if (inputs_.depth() == CV_16F)
return false;
inputs_.getUMatVector(inputs);
outputs_.getUMatVector(outputs);
internals_.getUMatVector(internals);
int outCn = numOutput;
int inpCn = inputs[0].size[1];
if (is1x1())
return false;
if (umat_weights.empty() || inputs.size() >= 2) {
Mat temp;
if (fusedWeights)
weightsMat.copyTo(umat_weights);
else if (!blobs.empty()) {
transpose(blobs[0].reshape(1, inpCn), temp);
temp.copyTo(umat_weights);
}
else {
transpose(inputs[1].reshape(1, inpCn), temp);
temp.copyTo(umat_weights);
}
}
if (umat_biases.empty() || inputs.size() >= 3) {
if (fusedBias)
biasesMat.copyTo(umat_biases);
else if (blobs.size() > 1)
blobs[1].reshape(1, outCn).copyTo(umat_biases);
else if (inputs.size() >= 3)
inputs[2].reshape(1, outCn).copyTo(umat_biases);
else
umat_biases = UMat::zeros(outCn, 1, CV_32F);
}
String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type()));
buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ",
pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width);
//for (size_t ii = 0; ii < outputs.size(); ii++)
{
int ii = 0;
int inpGroupCn = inpCn / groups;
int outGroupCn = outCn / groups;
const UMat& inp = inputs[ii];
UMat& out = outputs[ii];
int numImg = inp.size[0];
int inpH = inp.size[2], inpW = inp.size[3];
int outH = out.size[2], outW = out.size[3];
MatShape inpshape = shape(numImg*inpCn, inpH*inpW);
MatShape outshape = shape(numImg*outCn, outH*outW);
UMat convBlob = inputs[ii].reshape(1, inpshape);
UMat decnBlob = out.reshape(1, outshape);
int rows = internals[0].rows / groups;
for (int n = 0; n < numImg; n++)
{
for (int g = 0; g < groups; g++)
{
UMat colMat = internals[0].rowRange(_Range(g * rows, rows));
UMat convMat = convBlob.rowRange(_Range((g + n * groups) * inpGroupCn, inpGroupCn));
UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn));
gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0);
}
for (int g = 0; g < groups; g++)
{
int total = outGroupCn * decnBlob.cols;
int index = 0;
int height_col = inpH;
int width_col = inpW;
int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col;
int coeff_w = (1 - stride.width * height_col * width_col);
ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt);
k.set(index++, total);
k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0]));
k.set(index++, (int)(g * rows * internals[0].cols));
k.set(index++, outGroupCn);
k.set(index++, outH);
k.set(index++, outW);
k.set(index++, height_col);
k.set(index++, width_col);
k.set(index++, coeff_h);
k.set(index++, coeff_w);
k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases));
k.set(index++, (int)(g * outGroupCn * umat_biases.cols));
k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob));
k.set(index++, (int)((g + n * groups) * outGroupCn * decnBlob.cols));
size_t global[] = { (size_t)total };
bool ret = k.run(1, global, NULL, false);
if (!ret)
return false;
}
}
}
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
// For some reason, tests for deconvolution fail;
// Also, the current implementation is super-inefficient,
// Just disabled it. Need to rewrite it and then uncomment back these lines
//CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
// forward_ocl(inputs_arr, outputs_arr, internals_arr));
if (inputs_arr.depth(0) == CV_16F)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
auto kind = outputs_arr.kind();
std::vector<Mat> inputs, internals;
inputs_arr.getMatVector(inputs);
internals_arr.getMatVector(internals);
int outCn = numOutput;
int inpCn = inputs[0].size[1];
bool is1x1flag = is1x1();
int nstripes = getNumThreads();
/*CV_Assert(outputs.size() == 1);
CV_Assert(inputs[0].size[0] == outputs[0].size[0]);
CV_Assert(outCn == outputs[0].size[1]);*/
if (weightsMat.empty() || inputs.size() >= 2) {
Mat inpWeights = !blobs.empty() ? blobs[0] : inputs[1];
transpose(inpWeights.reshape(1, inpCn), weightsMat);
}
if (biasesMat.empty() || inputs.size() >= 3) {
Mat inpBias = blobs.size() >= 2 ? blobs[1] : inputs.size() >= 3 ? inputs[2] : Mat();
Mat biasesMat_ = !inpBias.empty() ? inpBias.reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
biasesMat_.copyTo(biasesMat);
}
/*printf("DeConvolution Input: ");
pprint(std::cout, inputs[0], 0, 3, 100, '[');
printf("\nDeConvolution Weights: ");
pprint(std::cout, weightsMat, 0, 3, 100, '[');
printf("\nDeConvolution Bias: ");
pprint(std::cout, biasesMat, 0, 3, 100, '[');
printf("\n");*/
//for (size_t ii = 0; ii < outputs.size(); ii++)
{
int ii = 0;
int inpGroupCn = inpCn / groups;
int outGroupCn = outCn / groups;
const Mat& inp = inputs[ii];
MatShape outshape = outputs_arr.shape(0);
CV_Assert(outshape.dims == inp.dims);
CV_Assert(outshape[0] == inp.size[0]);
CV_Assert(outshape[1] == outCn);
Mat out;
if (kind == _InputArray::STD_VECTOR_MAT) {
out = outputs_arr.getMat(0);
}
else {
out.create(outshape, inp.type());
}
int numImg = inp.size[0];
int inpH = inp.size[2], inpW = inp.size[3];
int outH = out.size[2], outW = out.size[3];
Mat convBlob = inputs[ii].reshape(1, numImg*inpCn);
Mat decnBlob = out.reshape(1, numImg*outCn);
for (int n = 0; n < numImg; n++)
{
for (int g = 0; g < groups; g++)
{
Mat dstMat = decnBlob.rowRange(_Range((g + n * groups) * outGroupCn, outGroupCn));
Mat &colMat = is1x1flag ? dstMat : internals[0];
Mat convMat = convBlob.rowRange(_Range((g + n * groups) * inpGroupCn, inpGroupCn));
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
kernel.height, kernel.width, pad.height, pad.width,
stride.height, stride.width, inpH, inpW, dstMat.ptr<float>(),
curBiasMat.ptr<float>(), is1x1flag);
}
}
if (kind == _InputArray::STD_VECTOR_UMAT) {
std::vector<UMat>& u_outputs = outputs_arr.getUMatVecRef();
out.copyTo(u_outputs[0]);
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
CV_Assert(!blobs.empty());
auto context = reinterpret_cast<csl::CSLContext*>(context_);
CV_Assert(inputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
auto input_shape = input_wrapper->getShape();
CV_Assert(outputs.size() == 1);
auto output_wrapper = outputs[0].dynamicCast<CUDABackendWrapper>();
auto output_shape = output_wrapper->getShape();
const auto output_feature_maps = numOutput;
const auto output_feature_maps_per_group = blobs[0].size[1];
const auto groups = output_feature_maps / output_feature_maps_per_group;
TransposeConvolutionConfiguration config;
config.kernel_size.assign(std::begin(kernel_size), std::end(kernel_size));
config.dilations.assign(std::begin(dilations), std::end(dilations));
config.strides.assign(std::begin(strides), std::end(strides));
if (padMode.empty())
{
config.padMode = TransposeConvolutionConfiguration::PaddingMode::MANUAL;
config.pads_begin.assign(std::begin(pads_begin), std::end(pads_begin));
config.pads_end.assign(std::begin(pads_end), std::end(pads_end));
}
else if (padMode == "VALID")
{
config.padMode = TransposeConvolutionConfiguration::PaddingMode::VALID;
}
else if (padMode == "SAME")
{
config.padMode = TransposeConvolutionConfiguration::PaddingMode::SAME;
}
else
{
CV_Error(Error::StsNotImplemented, padMode + " padding mode not supported by DeconvolutionLayer");
}
config.input_shape.assign(std::begin(input_shape), std::end(input_shape));
config.output_shape.assign(std::begin(output_shape), std::end(output_shape));
config.groups = groups;
CV_Assert(blobs.size() >= 1);
Mat filtersMat = fusedWeights ? weightsMat.t() : blobs[0];
Mat biasMat = (hasBias() || fusedBias) ? biasesMat : Mat();
if (countNonZero(biasMat) == 0)
biasMat = Mat();
return make_cuda_node<cuda4dnn::TransposeConvolutionOp>(
preferableTarget, std::move(context->stream), std::move(context->cudnn_handle), config, filtersMat, biasMat);
}
#endif
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert(!blobs.empty());
CV_Assert(inputs.size() == 1);
CV_Assert(nodes.size() == 1);
bool has_bias = hasBias() || fusedBias;
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto y = outputs[0].dynamicCast<CannBackendWrapper>();
const auto shape_x = x->host->size; // [N, C, H, W]
const auto shape_y = y->host->size; // [N, C, H, W]
const int filter_out_channel = blobs[0].size[0];
const int groups = shape_x[1] / filter_out_channel;
// create operator
auto op = std::make_shared<ge::op::Conv2DTransposeD>(name);
// set attributes
op->set_attr_input_size(
ge::Operator::OpListInt({(int64_t)shape_y[0],
(int64_t)shape_y[1],
(int64_t)shape_y[2],
(int64_t)shape_y[3],})
);
op->set_attr_strides(
ge::Operator::OpListInt({1, 1, (int64_t)strides[0], (int64_t)strides[1]})
);
op->set_attr_pads(ge::Operator::OpListInt(
{(int64_t)pads_begin[1], (int64_t)pads_end[1], (int64_t)pads_begin[0], (int64_t)pads_end[0]}
));
op->set_attr_dilations(ge::Operator::OpListInt(
{1, 1, (int64_t)dilations[0], (int64_t)dilations[1]}
));
op->set_attr_groups(groups);
op->set_attr_data_format("NCHW");
op->set_attr_output_padding(
ge::Operator::OpListInt({0, 0, (int64_t)adjust_pads[0], (int64_t)adjust_pads[1]}) // adjust_pads: [height, width]
);
// set inputs
// set inputs : x
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto desc_x = x->getTensorDesc();
op->update_input_desc_x(*desc_x);
// set inputs : weight
const Mat& mat_w = blobs[0];
auto op_const_w = std::make_shared<CannConstOp>(mat_w.data, mat_w.type(), shape(mat_w), cv::format("%s_w", name.c_str()));
op->set_input_filter(*(op_const_w->getOp()));
op->update_input_desc_filter(*(op_const_w->getTensorDesc()));
// set inputs : bias
if (has_bias)
{
int out_channel = blobs[0].size[0];
const Mat& mat_b = blobs[1];
std::vector<int> shape_b{out_channel};
auto op_const_b = std::make_shared<CannConstOp>(mat_b.data, mat_b.type(), shape_b, cv::format("%s_b", name.c_str()));
op->set_input_bias(*(op_const_b->getOp()));
op->update_input_desc_bias(*(op_const_b->getTensorDesc()));
}
// set outputs
auto desc_output = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*desc_output);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
CV_Assert(!blobs.empty());
const int outGroupCn = blobs[0].size[1];
const int group = numOutput / outGroupCn;
CV_Assert(group == 1);
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
std::vector<size_t> kernel_shape = getShape<size_t>(blobs[0]);
auto ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, blobs[0].data);
if (fusedWeights)
{
Mat newWeights;
transpose(weightsMat, newWeights);
ieWeights = std::make_shared<ov::op::v0::Constant>(ov::element::f32, kernel_shape, newWeights.data);
}
std::vector<size_t> paddings_end;
if (padMode == "SAME")
{
for (int i = 0; i < pads_begin.size(); i++) {
paddings_end.push_back(kernel_size[i] - pads_begin[i] - 1 - adjust_pads[i]);
}
adjust_pads = std::vector<size_t>(pads_begin.size(), 0);
} else {
paddings_end = pads_end;
}
ov::op::PadType pad_type = padMode == "VALID" ? ov::op::PadType::VALID : ov::op::PadType::EXPLICIT;
auto deconv = std::make_shared<ov::op::v1::ConvolutionBackpropData>(
ieInpNode,
ieWeights,
ov::Strides(strides),
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(pads_begin.begin(), pads_begin.end())),
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(paddings_end.begin(), paddings_end.end())),
ov::Strides(dilations),
pad_type,
ov::CoordinateDiff(std::vector<std::ptrdiff_t>(adjust_pads.begin(), adjust_pads.end())));
if (hasBias() || fusedBias)
{
std::vector<size_t> shape(deconv->get_shape().size(), 1);
shape[1] = numOutput;
auto bias = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape(shape), blobs[1].data);
auto deconv_bias = std::make_shared<ov::op::v1::Add>(deconv, bias, ov::op::AutoBroadcastType::NUMPY);
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv_bias));
}
return Ptr<BackendNode>(new InfEngineNgraphNode(deconv));
}
#endif // HAVE_DNN_NGRAPH
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_Assert(inputs.size() == outputs.size());
float flops = 0;
int outChannels = blobs[0].size[0];
size_t karea = std::accumulate(kernel_size.begin(), kernel_size.end(),
1, std::multiplies<size_t>());
for (int i = 0; i < inputs.size(); i++)
{
flops += CV_BIG_INT(2)*outChannels*karea*total(inputs[i]);
}
return flops;
}
};
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams &params)
{
Ptr<ConvolutionLayerImpl> l(new ConvolutionLayerImpl(params));
return l;
}
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams &params)
{
return Ptr<BaseConvolutionLayer>(new DeConvolutionLayerImpl(params));
}
}
}