Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1463 lines
42 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <cstring>
#include <ctime>
#include <sys/stat.h>
#include <sys/types.h>
#ifdef _WIN32
#include <direct.h>
#endif /* _WIN32 */
#include "utility.hpp"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#if defined __GNUC__ && __GNUC__ >= 8
#pragma GCC diagnostic ignored "-Wclass-memaccess"
#endif
using namespace cv;
#ifndef PATH_MAX
#define PATH_MAX 512
#endif /* PATH_MAX */
#define __BEGIN__ __CV_BEGIN__
#define __END__ __CV_END__
#define EXIT __CV_EXIT__
static int icvMkDir( const char* filename )
{
char path[PATH_MAX];
char* p;
int pos;
#ifdef _WIN32
struct _stat st;
#else /* _WIN32 */
struct stat st;
mode_t mode;
mode = 0755;
#endif /* _WIN32 */
strcpy( path, filename );
p = path;
for( ; ; )
{
pos = (int)strcspn( p, "/\\" );
if( pos == (int) strlen( p ) ) break;
if( pos != 0 )
{
p[pos] = '\0';
#ifdef _WIN32
if( p[pos-1] != ':' )
{
if( _stat( path, &st ) != 0 )
{
if( _mkdir( path ) != 0 ) return 0;
}
}
#else /* _WIN32 */
if( stat( path, &st ) != 0 )
{
if( mkdir( path, mode ) != 0 ) return 0;
}
#endif /* _WIN32 */
}
p[pos] = '/';
p += pos + 1;
}
return 1;
}
static void icvWriteVecHeader( FILE* file, int count, int width, int height )
{
int vecsize;
short tmp;
/* number of samples */
fwrite( &count, sizeof( count ), 1, file );
/* vector size */
vecsize = width * height;
fwrite( &vecsize, sizeof( vecsize ), 1, file );
/* min/max values */
tmp = 0;
fwrite( &tmp, sizeof( tmp ), 1, file );
fwrite( &tmp, sizeof( tmp ), 1, file );
}
static void icvWriteVecSample( FILE* file, Mat sample )
{
uchar chartmp = 0;
fwrite( &chartmp, sizeof( chartmp ), 1, file );
for(int r = 0; r < sample.rows; r++ )
{
for(int c = 0; c < sample.cols; c++ )
{
short tmp = sample.at<uchar>(r,c);
fwrite( &tmp, sizeof( tmp ), 1, file );
}
}
}
/* Calculates coefficients of perspective transformation
* which maps <quad> into rectangle ((0,0), (w,0), (w,h), (h,0)):
*
* c00*xi + c01*yi + c02
* ui = ---------------------
* c20*xi + c21*yi + c22
*
* c10*xi + c11*yi + c12
* vi = ---------------------
* c20*xi + c21*yi + c22
*
* Coefficients are calculated by solving linear system:
* / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\
* | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1|
* | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2|
* | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|,
* | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0|
* | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1|
* | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2|
* \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/
*
* where:
* (xi, yi) = (quad[i][0], quad[i][1])
* cij - coeffs[i][j], coeffs[2][2] = 1
* (ui, vi) - rectangle vertices
*/
static void cvGetPerspectiveTransform( Size src_size, double quad[4][2], double coeffs[3][3] )
{
double a[8][8];
double b[8];
Mat A( 8, 8, CV_64FC1, a );
Mat B( 8, 1, CV_64FC1, b );
Mat X( 8, 1, CV_64FC1, coeffs );
int i;
for( i = 0; i < 4; ++i )
{
a[i][0] = quad[i][0]; a[i][1] = quad[i][1]; a[i][2] = 1;
a[i][3] = a[i][4] = a[i][5] = a[i][6] = a[i][7] = 0;
b[i] = 0;
}
for( i = 4; i < 8; ++i )
{
a[i][3] = quad[i-4][0]; a[i][4] = quad[i-4][1]; a[i][5] = 1;
a[i][0] = a[i][1] = a[i][2] = a[i][6] = a[i][7] = 0;
b[i] = 0;
}
int u = src_size.width - 1;
int v = src_size.height - 1;
a[1][6] = -quad[1][0] * u; a[1][7] = -quad[1][1] * u;
a[2][6] = -quad[2][0] * u; a[2][7] = -quad[2][1] * u;
b[1] = b[2] = u;
a[6][6] = -quad[2][0] * v; a[6][7] = -quad[2][1] * v;
a[7][6] = -quad[3][0] * v; a[7][7] = -quad[3][1] * v;
b[6] = b[7] = v;
solve( A, B, X );
coeffs[2][2] = 1;
}
/* Warps source into destination by a perspective transform */
static void cvWarpPerspective( Mat src, Mat dst, double quad[4][2] )
{
int fill_value = 0;
double c[3][3]; /* transformation coefficients */
double q[4][2]; /* rearranged quad */
int left = 0;
int right = 0;
int next_right = 0;
int next_left = 0;
double y_min = 0;
double y_max = 0;
double k_left, b_left, k_right, b_right;
double d = 0;
int direction = 0;
int i;
if( src.type() != CV_8UC1 || src.dims != 2 )
{
CV_Error( Error::StsBadArg,
"Source must be two-dimensional array of CV_8UC1 type." );
}
if( dst.type() != CV_8UC1 || dst.dims != 2 )
{
CV_Error( Error::StsBadArg,
"Destination must be two-dimensional array of CV_8UC1 type." );
}
cvGetPerspectiveTransform( src.size(), quad, c );
/* if direction > 0 then vertices in quad follow in a CW direction,
otherwise they follow in a CCW direction */
direction = 0;
for( i = 0; i < 4; ++i )
{
int ni = i + 1; if( ni == 4 ) ni = 0;
int pi = i - 1; if( pi == -1 ) pi = 3;
d = (quad[i][0] - quad[pi][0])*(quad[ni][1] - quad[i][1]) -
(quad[i][1] - quad[pi][1])*(quad[ni][0] - quad[i][0]);
int cur_direction = d > 0 ? 1 : d < 0 ? -1 : 0;
if( direction == 0 )
{
direction = cur_direction;
}
else if( direction * cur_direction < 0 )
{
direction = 0;
break;
}
}
if( direction == 0 )
{
CV_Error(Error::StsBadArg, "Quadrangle is nonconvex or degenerated." );
}
/* <left> is the index of the topmost quad vertice
if there are two such vertices <left> is the leftmost one */
left = 0;
for( i = 1; i < 4; ++i )
{
if( (quad[i][1] < quad[left][1]) ||
((quad[i][1] == quad[left][1]) && (quad[i][0] < quad[left][0])) )
{
left = i;
}
}
/* rearrange <quad> vertices in such way that they follow in a CW
direction and the first vertice is the topmost one and put them
into <q> */
if( direction > 0 )
{
for( i = left; i < 4; ++i )
{
q[i-left][0] = quad[i][0];
q[i-left][1] = quad[i][1];
}
for( i = 0; i < left; ++i )
{
q[4-left+i][0] = quad[i][0];
q[4-left+i][1] = quad[i][1];
}
}
else
{
for( i = left; i >= 0; --i )
{
q[left-i][0] = quad[i][0];
q[left-i][1] = quad[i][1];
}
for( i = 3; i > left; --i )
{
q[4+left-i][0] = quad[i][0];
q[4+left-i][1] = quad[i][1];
}
}
left = right = 0;
/* if there are two topmost points, <right> is the index of the rightmost one
otherwise <right> */
if( q[left][1] == q[left+1][1] )
{
right = 1;
}
/* <next_left> follows <left> in a CCW direction */
next_left = 3;
/* <next_right> follows <right> in a CW direction */
next_right = right + 1;
/* subtraction of 1 prevents skipping of the first row */
y_min = q[left][1] - 1;
/* left edge equation: y = k_left * x + b_left */
k_left = (q[left][0] - q[next_left][0]) /
(q[left][1] - q[next_left][1]);
b_left = (q[left][1] * q[next_left][0] -
q[left][0] * q[next_left][1]) /
(q[left][1] - q[next_left][1]);
/* right edge equation: y = k_right * x + b_right */
k_right = (q[right][0] - q[next_right][0]) /
(q[right][1] - q[next_right][1]);
b_right = (q[right][1] * q[next_right][0] -
q[right][0] * q[next_right][1]) /
(q[right][1] - q[next_right][1]);
for(;;)
{
int x, y;
y_max = MIN( q[next_left][1], q[next_right][1] );
int iy_min = MAX( cvRound(y_min), 0 ) + 1;
int iy_max = MIN( cvRound(y_max), dst.rows - 1 );
double x_min = k_left * iy_min + b_left;
double x_max = k_right * iy_min + b_right;
/* walk through the destination quadrangle row by row */
for( y = iy_min; y <= iy_max; ++y )
{
int ix_min = MAX( cvRound( x_min ), 0 );
int ix_max = MIN( cvRound( x_max ), dst.cols - 1 );
for( x = ix_min; x <= ix_max; ++x )
{
/* calculate coordinates of the corresponding source array point */
double div = (c[2][0] * x + c[2][1] * y + c[2][2]);
double src_x = (c[0][0] * x + c[0][1] * y + c[0][2]) / div;
double src_y = (c[1][0] * x + c[1][1] * y + c[1][2]) / div;
int isrc_x = cvFloor( src_x );
int isrc_y = cvFloor( src_y );
double delta_x = src_x - isrc_x;
double delta_y = src_y - isrc_y;
int i00, i10, i01, i11;
i00 = i10 = i01 = i11 = (int) fill_value;
/* linear interpolation using 2x2 neighborhood */
if( isrc_x >= 0 && isrc_x < src.cols &&
isrc_y >= 0 && isrc_y < src.rows )
{
i00 = src.at<uchar>(isrc_y, isrc_x);
}
if( isrc_x >= -1 && isrc_x + 1 < src.cols &&
isrc_y >= 0 && isrc_y < src.rows )
{
i10 = src.at<uchar>(isrc_y, isrc_x + 1);
}
if( isrc_x >= 0 && isrc_x < src.cols &&
isrc_y >= -1 && isrc_y + 1 < src.rows )
{
i01 = src.at<uchar>(isrc_y + 1, isrc_x);
}
if( isrc_x >= -1 && isrc_x + 1 < src.cols &&
isrc_y >= -1 && isrc_y + 1 < src.rows )
{
i11 = src.at<uchar>(isrc_y + 1, isrc_x + 1);
}
double i0 = i00 + (i10 - i00)*delta_x;
double i1 = i01 + (i11 - i01)*delta_x;
dst.at<uchar>(y, x) = (uchar) (i0 + (i1 - i0)*delta_y);
}
x_min += k_left;
x_max += k_right;
}
if( (next_left == next_right) ||
(next_left+1 == next_right && q[next_left][1] == q[next_right][1]) )
{
break;
}
if( y_max == q[next_left][1] )
{
left = next_left;
next_left = left - 1;
k_left = (q[left][0] - q[next_left][0]) /
(q[left][1] - q[next_left][1]);
b_left = (q[left][1] * q[next_left][0] -
q[left][0] * q[next_left][1]) /
(q[left][1] - q[next_left][1]);
}
if( y_max == q[next_right][1] )
{
right = next_right;
next_right = right + 1;
k_right = (q[right][0] - q[next_right][0]) /
(q[right][1] - q[next_right][1]);
b_right = (q[right][1] * q[next_right][0] -
q[right][0] * q[next_right][1]) /
(q[right][1] - q[next_right][1]);
}
y_min = y_max;
}
}
static
void icvRandomQuad( int width, int height, double quad[4][2],
double maxxangle,
double maxyangle,
double maxzangle )
{
double distfactor = 3.0;
double distfactor2 = 1.0;
double halfw, halfh;
int i;
double rotVectData[3];
double vectData[3];
double rotMatData[9];
double d;
Mat rotVect( 3, 1, CV_64FC1, &rotVectData[0] );
Mat rotMat( 3, 3, CV_64FC1, &rotMatData[0] );
Mat vect( 3, 1, CV_64FC1, &vectData[0] );
rotVectData[0] = theRNG().uniform( -maxxangle, maxxangle );
rotVectData[1] = ( maxyangle - fabs( rotVectData[0] ) ) * theRNG().uniform( -1.0, 1.0 );
rotVectData[2] = theRNG().uniform( -maxzangle, maxzangle );
d = ( distfactor + distfactor2 * theRNG().uniform( -1.0, 1.0 ) ) * width;
Rodrigues( rotVect, rotMat );
halfw = 0.5 * width;
halfh = 0.5 * height;
quad[0][0] = -halfw;
quad[0][1] = -halfh;
quad[1][0] = halfw;
quad[1][1] = -halfh;
quad[2][0] = halfw;
quad[2][1] = halfh;
quad[3][0] = -halfw;
quad[3][1] = halfh;
for( i = 0; i < 4; i++ )
{
rotVectData[0] = quad[i][0];
rotVectData[1] = quad[i][1];
rotVectData[2] = 0.0;
gemm(rotMat, rotVect, 1., Mat(), 1., vect);
quad[i][0] = vectData[0] * d / (d + vectData[2]) + halfw;
quad[i][1] = vectData[1] * d / (d + vectData[2]) + halfh;
}
}
typedef struct CvSampleDistortionData
{
Mat src;
Mat erode;
Mat dilate;
Mat mask;
Mat img;
Mat maskimg;
int dx;
int dy;
int bgcolor;
} CvSampleDistortionData;
#if defined CV_OPENMP && (defined _MSC_VER || defined CV_ICC)
#define CV_OPENMP 1
#else
#undef CV_OPENMP
#endif
typedef struct CvBackgroundData
{
int count;
char** filename;
int last;
int round;
Size winsize;
} CvBackgroundData;
typedef struct CvBackgroundReader
{
Mat src;
Mat img;
Point offset;
float scale;
float scalefactor;
float stepfactor;
Point point;
} CvBackgroundReader;
/*
* Background reader
* Created in each thread
*/
CvBackgroundReader* cvbgreader = NULL;
#if defined CV_OPENMP
#pragma omp threadprivate(cvbgreader)
#endif
CvBackgroundData* cvbgdata = NULL;
static int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold,
CvSampleDistortionData* data )
{
memset( data, 0, sizeof( *data ) );
data->src = imread( imgfilename, IMREAD_GRAYSCALE );
if( !(data->src.empty()) && data->src.type() == CV_8UC1 )
{
int r, c;
data->dx = data->src.cols / 2;
data->dy = data->src.rows / 2;
data->bgcolor = bgcolor;
data->mask = data->src.clone();
data->erode = data->src.clone();
data->dilate = data->src.clone();
/* make mask image */
for( r = 0; r < data->mask.rows; r++ )
{
for( c = 0; c < data->mask.cols; c++ )
{
uchar& pmask = data->mask.at<uchar>(r, c);
if( bgcolor - bgthreshold <= (int)pmask &&
(int)pmask <= bgcolor + bgthreshold )
{
pmask = (uchar) 0;
}
else
{
pmask = (uchar) 255;
}
}
}
/* extend borders of source image */
erode( data->src, data->erode, Mat() );
dilate( data->src, data->dilate, Mat() );
for( r = 0; r < data->mask.rows; r++ )
{
for( c = 0; c < data->mask.cols; c++ )
{
uchar& pmask = data->mask.at<uchar>(r, c);
if( pmask == 0 )
{
uchar& psrc = data->src.at<uchar>(r, c);
uchar& perode = data->erode.at<uchar>(r, c);
uchar& pdilate = data->dilate.at<uchar>(r, c);
uchar de = (uchar)(bgcolor - perode);
uchar dd = (uchar)(pdilate - bgcolor);
if( de >= dd && de > bgthreshold )
{
psrc = perode;
}
if( dd > de && dd > bgthreshold )
{
psrc = pdilate;
}
}
}
}
data->img = Mat(Size( data->src.cols + 2 * data->dx, data->src.rows + 2 * data->dy ), CV_8UC1);
data->maskimg = Mat(Size(data->src.cols + 2 * data->dx, data->src.rows + 2 * data->dy), CV_8UC1);
return 1;
}
return 0;
}
static
void icvPlaceDistortedSample( Mat background,
int inverse, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int inscribe, double maxshiftf, double maxscalef,
CvSampleDistortionData* data )
{
double quad[4][2];
int r, c;
int forecolordev;
float scale;
Rect cr;
Rect roi;
double xshift, yshift, randscale;
icvRandomQuad( data->src.cols, data->src.rows, quad,
maxxangle, maxyangle, maxzangle );
quad[0][0] += (double) data->dx;
quad[0][1] += (double) data->dy;
quad[1][0] += (double) data->dx;
quad[1][1] += (double) data->dy;
quad[2][0] += (double) data->dx;
quad[2][1] += (double) data->dy;
quad[3][0] += (double) data->dx;
quad[3][1] += (double) data->dy;
data->img = data->bgcolor;
data->maskimg = 0;
cvWarpPerspective( data->src, data->img, quad );
cvWarpPerspective( data->mask, data->maskimg, quad );
GaussianBlur( data->maskimg, data->maskimg, Size(3, 3), 0, 0 );
cr.x = data->dx;
cr.y = data->dy;
cr.width = data->src.cols;
cr.height = data->src.rows;
if( inscribe )
{
/* quad's circumscribing rectangle */
cr.x = (int) MIN( quad[0][0], quad[3][0] );
cr.y = (int) MIN( quad[0][1], quad[1][1] );
cr.width = (int) (MAX( quad[1][0], quad[2][0] ) + 0.5F ) - cr.x;
cr.height = (int) (MAX( quad[2][1], quad[3][1] ) + 0.5F ) - cr.y;
}
xshift = theRNG().uniform( 0., maxshiftf );
yshift = theRNG().uniform( 0., maxshiftf );
cr.x -= (int) ( xshift * cr.width );
cr.y -= (int) ( yshift * cr.height );
cr.width = (int) ((1.0 + maxshiftf) * cr.width );
cr.height = (int) ((1.0 + maxshiftf) * cr.height);
randscale = theRNG().uniform( 0., maxscalef );
cr.x -= (int) ( 0.5 * randscale * cr.width );
cr.y -= (int) ( 0.5 * randscale * cr.height );
cr.width = (int) ((1.0 + randscale) * cr.width );
cr.height = (int) ((1.0 + randscale) * cr.height);
scale = MAX( ((float) cr.width) / background.cols, ((float) cr.height) / background.rows );
roi.x = (int) (-0.5F * (scale * background.cols - cr.width) + cr.x);
roi.y = (int) (-0.5F * (scale * background.rows - cr.height) + cr.y);
roi.width = (int) (scale * background.cols);
roi.height = (int) (scale * background.rows);
Mat img( background.size(), CV_8UC1 );
Mat maskimg( background.size(), CV_8UC1 );
resize( data->img(roi & Rect(Point(0,0), data->img.size())), img, img.size(), 0, 0, INTER_LINEAR_EXACT);
resize( data->maskimg(roi & Rect(Point(0, 0), data->maskimg.size())), maskimg, maskimg.size(), 0, 0, INTER_LINEAR_EXACT);
forecolordev = theRNG().uniform( -maxintensitydev, maxintensitydev );
for( r = 0; r < img.rows; r++ )
{
for( c = 0; c < img.cols; c++ )
{
uchar& pbg = background.at<uchar>(r, c);
uchar& palpha = maskimg.at<uchar>(r, c);
uchar chartmp = (uchar) MAX( 0, MIN( 255, forecolordev + img.at<uchar>(r, c)) );
if( inverse )
{
chartmp ^= 0xFF;
}
pbg = (uchar) ((chartmp*palpha + (255 - palpha)*pbg) / 255);
}
}
}
static
CvBackgroundData* icvCreateBackgroundData( const char* filename, Size winsize )
{
CvBackgroundData* data = NULL;
const char* dir = NULL;
char full[PATH_MAX];
char* imgfilename = NULL;
size_t datasize = 0;
int count = 0;
FILE* input = NULL;
char* tmp = NULL;
int len = 0;
CV_Assert( filename != NULL );
dir = strrchr( filename, '\\' );
if( dir == NULL )
{
dir = strrchr( filename, '/' );
}
if( dir == NULL )
{
imgfilename = &(full[0]);
}
else
{
strncpy( &(full[0]), filename, (dir - filename + 1) );
imgfilename = &(full[(dir - filename + 1)]);
}
input = fopen( filename, "r" );
if( input != NULL )
{
count = 0;
datasize = 0;
/* count */
while( !feof( input ) )
{
*imgfilename = '\0';
if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
break;
len = (int)strlen( imgfilename );
for( ; len > 0 && isspace(imgfilename[len-1]); len-- )
imgfilename[len-1] = '\0';
if( len > 0 )
{
if( (*imgfilename) == '#' ) continue; /* comment */
count++;
datasize += sizeof( char ) * (strlen( &(full[0]) ) + 1);
}
}
if( count > 0 )
{
//rewind( input );
fseek( input, 0, SEEK_SET );
datasize += sizeof( *data ) + sizeof( char* ) * count;
data = (CvBackgroundData*) fastMalloc( datasize );
memset( (void*) data, 0, datasize );
data->count = count;
data->filename = (char**) (data + 1);
data->last = 0;
data->round = 0;
data->winsize = winsize;
tmp = (char*) (data->filename + data->count);
count = 0;
while( !feof( input ) )
{
*imgfilename = '\0';
if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
break;
len = (int)strlen( imgfilename );
if( len > 0 && imgfilename[len-1] == '\n' )
imgfilename[len-1] = 0, len--;
if( len > 0 )
{
if( (*imgfilename) == '#' ) continue; /* comment */
data->filename[count++] = tmp;
strcpy( tmp, &(full[0]) );
tmp += strlen( &(full[0]) ) + 1;
}
}
}
fclose( input );
}
return data;
}
static
CvBackgroundReader* icvCreateBackgroundReader()
{
CvBackgroundReader* reader = NULL;
reader = new CvBackgroundReader;
reader->scale = 1.0F;
reader->scalefactor = 1.4142135623730950488016887242097F;
reader->stepfactor = 0.5F;
return reader;
}
static
void icvGetNextFromBackgroundData( CvBackgroundData* data,
CvBackgroundReader* reader )
{
Mat img;
int round = 0;
int i = 0;
Point offset;
CV_Assert( data != NULL && reader != NULL );
#ifdef CV_OPENMP
#pragma omp critical(c_background_data)
#endif /* CV_OPENMP */
{
for( i = 0; i < data->count; i++ )
{
round = data->round;
data->last = theRNG().uniform( 0, RAND_MAX ) % data->count;
#ifdef CV_VERBOSE
printf( "Open background image: %s\n", data->filename[data->last] );
#endif /* CV_VERBOSE */
img = imread( data->filename[data->last], IMREAD_GRAYSCALE );
if( img.empty() )
continue;
data->round += data->last / data->count;
data->round = data->round % (data->winsize.width * data->winsize.height);
offset.x = round % data->winsize.width;
offset.y = round / data->winsize.width;
offset.x = MIN( offset.x, img.cols - data->winsize.width );
offset.y = MIN( offset.y, img.rows - data->winsize.height );
if( !img.empty() && img.type() == CV_8UC1 && offset.x >= 0 && offset.y >= 0 )
{
break;
}
img = Mat();
}
}
if( img.empty() )
{
/* no appropriate image */
#ifdef CV_VERBOSE
printf( "Invalid background description file.\n" );
#endif /* CV_VERBOSE */
CV_Assert( 0 );
exit( 1 );
}
reader->src = img;
//reader->offset.x = round % data->winsize.width;
//reader->offset.y = round / data->winsize.width;
reader->offset = offset;
reader->point = reader->offset;
reader->scale = MAX(
((float) data->winsize.width + reader->point.x) / ((float) reader->src.cols),
((float) data->winsize.height + reader->point.y) / ((float) reader->src.rows) );
resize( reader->src, reader->img,
Size((int)(reader->scale * reader->src.cols + 0.5F), (int)(reader->scale * reader->src.rows + 0.5F)), 0, 0, INTER_LINEAR_EXACT);
}
/*
* icvGetBackgroundImage
*
* Get an image from background
* <img> must be allocated and have size, previously passed to icvInitBackgroundReaders
*
* Usage example:
* icvInitBackgroundReaders( "bg.txt", cvSize( 24, 24 ) );
* ...
* #pragma omp parallel
* {
* ...
* icvGetBackgroundImage( cvbgdata, cvbgreader, img );
* ...
* }
* ...
* icvDestroyBackgroundReaders();
*/
static
void icvGetBackgroundImage( CvBackgroundData* data,
CvBackgroundReader* reader,
Mat& img )
{
CV_Assert( data != NULL && reader != NULL );
if( reader->img.empty() )
{
icvGetNextFromBackgroundData( data, reader );
}
img = reader->img(Rect(reader->point.x, reader->point.y, data->winsize.width, data->winsize.height)).clone();
if( (int) ( reader->point.x + (1.0F + reader->stepfactor ) * data->winsize.width )
< reader->img.cols )
{
reader->point.x += (int) (reader->stepfactor * data->winsize.width);
}
else
{
reader->point.x = reader->offset.x;
if( (int) ( reader->point.y + (1.0F + reader->stepfactor ) * data->winsize.height )
< reader->img.rows )
{
reader->point.y += (int) (reader->stepfactor * data->winsize.height);
}
else
{
reader->point.y = reader->offset.y;
reader->scale *= reader->scalefactor;
if( reader->scale <= 1.0F )
{
resize(reader->src, reader->img,
Size((int)(reader->scale * reader->src.cols), (int)(reader->scale * reader->src.rows)), 0, 0, INTER_LINEAR_EXACT);
}
else
{
icvGetNextFromBackgroundData( data, reader );
}
}
}
}
/*
* icvInitBackgroundReaders
*
* Initialize background reading process.
* <cvbgreader> and <cvbgdata> are initialized.
* Must be called before any usage of background
*
* filename - name of background description file
* winsize - size of images will be obtained from background
*
* return 1 on success, 0 otherwise.
*/
static int icvInitBackgroundReaders( const char* filename, Size winsize )
{
if( cvbgdata == NULL && filename != NULL )
{
cvbgdata = icvCreateBackgroundData( filename, winsize );
}
if( cvbgdata )
{
#ifdef CV_OPENMP
#pragma omp parallel
#endif /* CV_OPENMP */
{
#ifdef CV_OPENMP
#pragma omp critical(c_create_bg_data)
#endif /* CV_OPENMP */
{
if( cvbgreader == NULL )
{
cvbgreader = icvCreateBackgroundReader();
}
}
}
}
return (cvbgdata != NULL);
}
/*
* icvDestroyBackgroundReaders
*
* Finish background reading process
*/
static
void icvDestroyBackgroundReaders()
{
/* release background reader in each thread */
#ifdef CV_OPENMP
#pragma omp parallel
#endif /* CV_OPENMP */
{
#ifdef CV_OPENMP
#pragma omp critical(c_release_bg_data)
#endif /* CV_OPENMP */
{
if( cvbgreader != NULL )
{
delete cvbgreader;
cvbgreader = NULL;
}
}
}
if( cvbgdata != NULL )
{
fastFree(cvbgdata);
cvbgdata = NULL;
}
}
void cvCreateTrainingSamples( const char* filename,
const char* imgfilename, int bgcolor, int bgthreshold,
const char* bgfilename, int count,
int invert, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int showsamples,
int winwidth, int winheight )
{
CvSampleDistortionData data;
CV_Assert( filename != NULL );
CV_Assert( imgfilename != NULL );
if( !icvMkDir( filename ) )
{
fprintf( stderr, "Unable to create output file: %s\n", filename );
return;
}
if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
{
FILE* output = NULL;
output = fopen( filename, "wb" );
if( output != NULL )
{
int i;
int inverse;
const int hasbg = (bgfilename != NULL && icvInitBackgroundReaders( bgfilename,
Size( winwidth,winheight ) ) );
Mat sample( winheight, winwidth, CV_8UC1 );
icvWriteVecHeader( output, count, sample.cols, sample.rows );
if( showsamples )
{
namedWindow( "Sample", WINDOW_AUTOSIZE );
}
inverse = invert;
for( i = 0; i < count; i++ )
{
if( hasbg )
{
icvGetBackgroundImage( cvbgdata, cvbgreader, sample );
}
else
{
sample = bgcolor;
}
if( invert == CV_RANDOM_INVERT )
{
inverse = theRNG().uniform( 0, 2 );
}
icvPlaceDistortedSample( sample, inverse, maxintensitydev,
maxxangle, maxyangle, maxzangle,
0 /* nonzero means placing image without cut offs */,
0.0 /* nonzero adds random shifting */,
0.0 /* nonzero adds random scaling */,
&data );
if( showsamples )
{
imshow( "Sample", sample );
if( (waitKey( 0 ) & 0xFF) == 27 )
{
showsamples = 0;
}
}
icvWriteVecSample( output, sample );
#ifdef CV_VERBOSE
if( i % 500 == 0 )
{
printf( "\r%3d%%", 100 * i / count );
}
#endif /* CV_VERBOSE */
}
icvDestroyBackgroundReaders();
fclose( output );
} /* if( output != NULL ) */
}
#ifdef CV_VERBOSE
printf( "\r \r" );
#endif /* CV_VERBOSE */
}
#define CV_INFO_FILENAME "info.dat"
void cvCreateTestSamples( const char* infoname,
const char* imgfilename, int bgcolor, int bgthreshold,
const char* bgfilename, int count,
int invert, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int showsamples,
int winwidth, int winheight, double maxscale )
{
CvSampleDistortionData data;
CV_Assert( infoname != NULL );
CV_Assert( imgfilename != NULL );
CV_Assert( bgfilename != NULL );
if( !icvMkDir( infoname ) )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to create directory hierarchy: %s\n", infoname );
#endif /* CV_VERBOSE */
return;
}
if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
{
char fullname[PATH_MAX];
char* filename;
FILE* info;
if( icvInitBackgroundReaders( bgfilename, Size( 10, 10 ) ) )
{
int i;
int x, y, width, height;
float scale;
int inverse;
if( showsamples )
{
namedWindow( "Image", WINDOW_AUTOSIZE );
}
info = fopen( infoname, "w" );
strcpy( fullname, infoname );
filename = strrchr( fullname, '\\' );
if( filename == NULL )
{
filename = strrchr( fullname, '/' );
}
if( filename == NULL )
{
filename = fullname;
}
else
{
filename++;
}
count = MIN( count, cvbgdata->count );
inverse = invert;
for( i = 0; i < count; i++ )
{
icvGetNextFromBackgroundData( cvbgdata, cvbgreader );
if( maxscale < 0.0 )
{
maxscale = MIN( 0.7F * cvbgreader->src.cols / winwidth,
0.7F * cvbgreader->src.rows / winheight );
}
if( maxscale < 1.0F ) continue;
scale = theRNG().uniform( 1.0F, (float)maxscale );
width = (int) (scale * winwidth);
height = (int) (scale * winheight);
x = (int) ( theRNG().uniform( 0.1, 0.8 ) * (cvbgreader->src.cols - width));
y = (int) ( theRNG().uniform( 0.1, 0.8 ) * (cvbgreader->src.rows - height));
if( invert == CV_RANDOM_INVERT )
{
inverse = theRNG().uniform( 0, 2 );
}
icvPlaceDistortedSample( cvbgreader->src(Rect(x, y, width, height)), inverse, maxintensitydev,
maxxangle, maxyangle, maxzangle,
1, 0.0, 0.0, &data );
sprintf( filename, "%04d_%04d_%04d_%04d_%04d.jpg",
(i + 1), x, y, width, height );
if( info )
{
fprintf( info, "%s %d %d %d %d %d\n",
filename, 1, x, y, width, height );
}
imwrite( fullname, cvbgreader->src );
if( showsamples )
{
imshow( "Image", cvbgreader->src );
if( (waitKey( 0 ) & 0xFF) == 27 )
{
showsamples = 0;
}
}
}
if( info ) fclose( info );
icvDestroyBackgroundReaders();
}
}
}
int cvCreateTrainingSamplesFromInfo( const char* infoname, const char* vecfilename,
int num,
int showsamples,
int winwidth, int winheight )
{
char fullname[PATH_MAX];
char* filename;
FILE* info;
FILE* vec;
int line;
int error;
int i;
int x, y, width, height;
int total;
CV_Assert( infoname != NULL );
CV_Assert( vecfilename != NULL );
total = 0;
if( !icvMkDir( vecfilename ) )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to create directory hierarchy: %s\n", vecfilename );
#endif /* CV_VERBOSE */
return total;
}
info = fopen( infoname, "r" );
if( info == NULL )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to open file: %s\n", infoname );
#endif /* CV_VERBOSE */
return total;
}
vec = fopen( vecfilename, "wb" );
if( vec == NULL )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to open file: %s\n", vecfilename );
#endif /* CV_VERBOSE */
fclose( info );
return total;
}
icvWriteVecHeader( vec, num, winwidth, winheight );
if( showsamples )
{
namedWindow( "Sample", WINDOW_AUTOSIZE );
}
strcpy( fullname, infoname );
filename = strrchr( fullname, '\\' );
if( filename == NULL )
{
filename = strrchr( fullname, '/' );
}
if( filename == NULL )
{
filename = fullname;
}
else
{
filename++;
}
for( line = 1, error = 0, total = 0; total < num ;line++ )
{
Mat src;
int count;
if(fscanf(info, "%s %d", filename, &count) == 2)
{
src = imread( fullname, IMREAD_GRAYSCALE );
if(src.empty())
{
#if CV_VERBOSE
fprintf( stderr, "Unable to open image: %s\n", fullname );
#endif /* CV_VERBOSE */
}
}
for( i = 0; (i < count) && (total < num); i++, total++ )
{
error = ( fscanf( info, "%d %d %d %d", &x, &y, &width, &height ) != 4 );
if( error ) break;
Mat sample;
resize( src(Rect(x, y, width, height)), sample, Size(winwidth, winheight), 0, 0,
width >= winwidth && height >= winheight ? INTER_AREA : INTER_LINEAR_EXACT );
if( showsamples )
{
imshow( "Sample", sample );
if( (waitKey( 0 ) & 0xFF) == 27 )
{
showsamples = 0;
}
}
icvWriteVecSample( vec, sample );
}
if( error )
{
#if CV_VERBOSE
fprintf( stderr, "%s(%d) : parse error", infoname, line );
#endif /* CV_VERBOSE */
break;
}
}
fclose( vec );
fclose( info );
return total;
}
typedef struct CvVecFile
{
FILE* input;
int count;
int vecsize;
int last;
} CvVecFile;
static
int icvGetTraininDataFromVec( Mat& img, CvVecFile& userdata )
{
AutoBuffer<short> vector(userdata.vecsize);
uchar tmp = 0;
int r = 0;
int c = 0;
CV_Assert( img.rows * img.cols == userdata.vecsize );
size_t elements_read = fread( &tmp, sizeof( tmp ), 1, userdata.input );
CV_Assert(elements_read == 1);
elements_read = fread(vector.data(), sizeof(short), userdata.vecsize, userdata.input);
CV_Assert(elements_read == (size_t)userdata.vecsize);
if( feof( userdata.input ) || userdata.last++ >= userdata.count )
{
return 0;
}
for( r = 0; r < img.rows; r++ )
{
for( c = 0; c < img.cols; c++ )
{
img.at<uchar>(r, c) = (uchar) ( vector[r * img.cols + c] );
}
}
return 1;
}
void cvShowVecSamples( const char* filename, int winwidth, int winheight,
double scale )
{
CvVecFile file;
short tmp;
int i;
tmp = 0;
file.input = fopen( filename, "rb" );
if( file.input != NULL )
{
size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input );
size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input );
size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input );
size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input );
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
if( file.vecsize != winwidth * winheight )
{
int guessed_w = 0;
int guessed_h = 0;
fprintf( stderr, "Warning: specified sample width=%d and height=%d "
"does not correspond to .vec file vector size=%d.\n",
winwidth, winheight, file.vecsize );
if( file.vecsize > 0 )
{
guessed_w = cvFloor( sqrt( (float) file.vecsize ) );
if( guessed_w > 0 )
{
guessed_h = file.vecsize / guessed_w;
}
}
if( guessed_w <= 0 || guessed_h <= 0 || guessed_w * guessed_h != file.vecsize)
{
fprintf( stderr, "Error: failed to guess sample width and height\n" );
fclose( file.input );
return;
}
else
{
winwidth = guessed_w;
winheight = guessed_h;
fprintf( stderr, "Guessed width=%d, guessed height=%d\n",
winwidth, winheight );
}
}
if( !feof( file.input ) && scale > 0 )
{
file.last = 0;
namedWindow( "Sample", WINDOW_AUTOSIZE );
for( i = 0; i < file.count; i++ )
{
Mat sample(winheight, winwidth, CV_8UC1);
icvGetTraininDataFromVec( sample, file );
if( scale != 1.0 )
resize( sample, sample,
Size(MAX(1, cvCeil(scale * winwidth)), MAX(1, cvCeil(scale * winheight))), 0, 0, INTER_LINEAR_EXACT);
imshow( "Sample", sample );
if( waitKey( 0 ) == 27 ) break;
}
}
fclose( file.input );
}
}