mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
828 lines
26 KiB
828 lines
26 KiB
#include "precomp.hpp" |
|
|
|
#define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0 |
|
|
|
static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p) |
|
{ |
|
return *(cvflann::IndexParams*)(p.params); |
|
} |
|
|
|
cv::flann::IndexParams::~IndexParams() |
|
{ |
|
delete &get_params(*this); |
|
} |
|
|
|
namespace cv |
|
{ |
|
|
|
namespace flann |
|
{ |
|
|
|
using namespace cvflann; |
|
|
|
IndexParams::IndexParams() |
|
{ |
|
params = new ::cvflann::IndexParams(); |
|
} |
|
|
|
template<typename T> |
|
T getParam(const IndexParams& _p, const String& key, const T& defaultVal=T()) |
|
{ |
|
::cvflann::IndexParams& p = get_params(_p); |
|
::cvflann::IndexParams::const_iterator it = p.find(key); |
|
if( it == p.end() ) |
|
return defaultVal; |
|
return it->second.cast<T>(); |
|
} |
|
|
|
template<typename T> |
|
void setParam(IndexParams& _p, const String& key, const T& value) |
|
{ |
|
::cvflann::IndexParams& p = get_params(_p); |
|
p[key] = value; |
|
} |
|
|
|
String IndexParams::getString(const String& key, const String& defaultVal) const |
|
{ |
|
return getParam(*this, key, defaultVal); |
|
} |
|
|
|
int IndexParams::getInt(const String& key, int defaultVal) const |
|
{ |
|
return getParam(*this, key, defaultVal); |
|
} |
|
|
|
double IndexParams::getDouble(const String& key, double defaultVal) const |
|
{ |
|
return getParam(*this, key, defaultVal); |
|
} |
|
|
|
|
|
void IndexParams::setString(const String& key, const String& value) |
|
{ |
|
setParam(*this, key, value); |
|
} |
|
|
|
void IndexParams::setInt(const String& key, int value) |
|
{ |
|
setParam(*this, key, value); |
|
} |
|
|
|
void IndexParams::setDouble(const String& key, double value) |
|
{ |
|
setParam(*this, key, value); |
|
} |
|
|
|
void IndexParams::setFloat(const String& key, float value) |
|
{ |
|
setParam(*this, key, value); |
|
} |
|
|
|
void IndexParams::setBool(const String& key, bool value) |
|
{ |
|
setParam(*this, key, value); |
|
} |
|
|
|
void IndexParams::setAlgorithm(int value) |
|
{ |
|
setParam(*this, "algorithm", (cvflann::flann_algorithm_t)value); |
|
} |
|
|
|
void IndexParams::getAll(std::vector<String>& names, |
|
std::vector<int>& types, |
|
std::vector<String>& strValues, |
|
std::vector<double>& numValues) const |
|
{ |
|
names.clear(); |
|
types.clear(); |
|
strValues.clear(); |
|
numValues.clear(); |
|
|
|
::cvflann::IndexParams& p = get_params(*this); |
|
::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end(); |
|
|
|
for( ; it != it_end; ++it ) |
|
{ |
|
names.push_back(it->first); |
|
try |
|
{ |
|
String val = it->second.cast<String>(); |
|
types.push_back(CV_USRTYPE1); |
|
strValues.push_back(val); |
|
numValues.push_back(-1); |
|
continue; |
|
} |
|
catch (...) {} |
|
|
|
strValues.push_back(it->second.type().name()); |
|
|
|
try |
|
{ |
|
double val = it->second.cast<double>(); |
|
types.push_back( CV_64F ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
float val = it->second.cast<float>(); |
|
types.push_back( CV_32F ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
int val = it->second.cast<int>(); |
|
types.push_back( CV_32S ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
short val = it->second.cast<short>(); |
|
types.push_back( CV_16S ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
ushort val = it->second.cast<ushort>(); |
|
types.push_back( CV_16U ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
char val = it->second.cast<char>(); |
|
types.push_back( CV_8S ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
uchar val = it->second.cast<uchar>(); |
|
types.push_back( CV_8U ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
bool val = it->second.cast<bool>(); |
|
types.push_back( CV_MAKETYPE(CV_USRTYPE1,2) ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
try |
|
{ |
|
cvflann::flann_algorithm_t val = it->second.cast<cvflann::flann_algorithm_t>(); |
|
types.push_back( CV_MAKETYPE(CV_USRTYPE1,3) ); |
|
numValues.push_back(val); |
|
continue; |
|
} |
|
catch (...) {} |
|
|
|
|
|
types.push_back(-1); // unknown type |
|
numValues.push_back(-1); |
|
} |
|
} |
|
|
|
|
|
KDTreeIndexParams::KDTreeIndexParams(int trees) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_KDTREE; |
|
p["trees"] = trees; |
|
} |
|
|
|
LinearIndexParams::LinearIndexParams() |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_LINEAR; |
|
} |
|
|
|
CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations, |
|
flann_centers_init_t centers_init, float cb_index ) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_KMEANS; |
|
// number of randomized trees to use (for kdtree) |
|
p["trees"] = trees; |
|
// branching factor |
|
p["branching"] = branching; |
|
// max iterations to perform in one kmeans clustering (kmeans tree) |
|
p["iterations"] = iterations; |
|
// algorithm used for picking the initial cluster centers for kmeans tree |
|
p["centers_init"] = centers_init; |
|
// cluster boundary index. Used when searching the kmeans tree |
|
p["cb_index"] = cb_index; |
|
} |
|
|
|
AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight, |
|
float memory_weight, float sample_fraction) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_AUTOTUNED; |
|
// precision desired (used for autotuning, -1 otherwise) |
|
p["target_precision"] = target_precision; |
|
// build tree time weighting factor |
|
p["build_weight"] = build_weight; |
|
// index memory weighting factor |
|
p["memory_weight"] = memory_weight; |
|
// what fraction of the dataset to use for autotuning |
|
p["sample_fraction"] = sample_fraction; |
|
} |
|
|
|
|
|
KMeansIndexParams::KMeansIndexParams(int branching, int iterations, |
|
flann_centers_init_t centers_init, float cb_index ) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_KMEANS; |
|
// branching factor |
|
p["branching"] = branching; |
|
// max iterations to perform in one kmeans clustering (kmeans tree) |
|
p["iterations"] = iterations; |
|
// algorithm used for picking the initial cluster centers for kmeans tree |
|
p["centers_init"] = centers_init; |
|
// cluster boundary index. Used when searching the kmeans tree |
|
p["cb_index"] = cb_index; |
|
} |
|
|
|
HierarchicalClusteringIndexParams::HierarchicalClusteringIndexParams(int branching , |
|
flann_centers_init_t centers_init, |
|
int trees, int leaf_size) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_HIERARCHICAL; |
|
// The branching factor used in the hierarchical clustering |
|
p["branching"] = branching; |
|
// Algorithm used for picking the initial cluster centers |
|
p["centers_init"] = centers_init; |
|
// number of parallel trees to build |
|
p["trees"] = trees; |
|
// maximum leaf size |
|
p["leaf_size"] = leaf_size; |
|
} |
|
|
|
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
p["algorithm"] = FLANN_INDEX_LSH; |
|
// The number of hash tables to use |
|
p["table_number"] = table_number; |
|
// The length of the key in the hash tables |
|
p["key_size"] = key_size; |
|
// Number of levels to use in multi-probe (0 for standard LSH) |
|
p["multi_probe_level"] = multi_probe_level; |
|
} |
|
|
|
SavedIndexParams::SavedIndexParams(const String& _filename) |
|
{ |
|
String filename = _filename; |
|
::cvflann::IndexParams& p = get_params(*this); |
|
|
|
p["algorithm"] = FLANN_INDEX_SAVED; |
|
p["filename"] = filename; |
|
} |
|
|
|
SearchParams::SearchParams( int checks, float eps, bool sorted ) |
|
{ |
|
::cvflann::IndexParams& p = get_params(*this); |
|
|
|
// how many leafs to visit when searching for neighbours (-1 for unlimited) |
|
p["checks"] = checks; |
|
// search for eps-approximate neighbours (default: 0) |
|
p["eps"] = eps; |
|
// only for radius search, require neighbours sorted by distance (default: true) |
|
p["sorted"] = sorted; |
|
} |
|
|
|
|
|
template<typename Distance, typename IndexType> void |
|
buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance()) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
if(DataType<ElementType>::type != data.type()) |
|
CV_Error_(Error::StsUnsupportedFormat, ("type=%d\n", data.type())); |
|
if(!data.isContinuous()) |
|
CV_Error(Error::StsBadArg, "Only continuous arrays are supported"); |
|
|
|
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols); |
|
IndexType* _index = new IndexType(dataset, get_params(params), dist); |
|
|
|
try |
|
{ |
|
_index->buildIndex(); |
|
} |
|
catch (...) |
|
{ |
|
delete _index; |
|
_index = NULL; |
|
|
|
throw; |
|
} |
|
|
|
index = _index; |
|
} |
|
|
|
template<typename Distance> void |
|
buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance()) |
|
{ |
|
buildIndex_<Distance, ::cvflann::Index<Distance> >(index, data, params, dist); |
|
} |
|
|
|
#if CV_NEON |
|
typedef ::cvflann::Hamming<uchar> HammingDistance; |
|
#else |
|
typedef ::cvflann::HammingLUT HammingDistance; |
|
#endif |
|
|
|
Index::Index() |
|
{ |
|
index = 0; |
|
featureType = CV_32F; |
|
algo = FLANN_INDEX_LINEAR; |
|
distType = FLANN_DIST_L2; |
|
} |
|
|
|
Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType) |
|
{ |
|
index = 0; |
|
featureType = CV_32F; |
|
algo = FLANN_INDEX_LINEAR; |
|
distType = FLANN_DIST_L2; |
|
build(_data, params, _distType); |
|
} |
|
|
|
void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
release(); |
|
algo = getParam<flann_algorithm_t>(params, "algorithm", FLANN_INDEX_LINEAR); |
|
if( algo == FLANN_INDEX_SAVED ) |
|
{ |
|
load(_data, getParam<String>(params, "filename", String())); |
|
return; |
|
} |
|
|
|
Mat data = _data.getMat(); |
|
index = 0; |
|
featureType = data.type(); |
|
distType = _distType; |
|
|
|
if ( algo == FLANN_INDEX_LSH) |
|
{ |
|
distType = FLANN_DIST_HAMMING; |
|
} |
|
|
|
switch( distType ) |
|
{ |
|
case FLANN_DIST_HAMMING: |
|
buildIndex< HammingDistance >(index, data, params); |
|
break; |
|
case FLANN_DIST_L2: |
|
buildIndex< ::cvflann::L2<float> >(index, data, params); |
|
break; |
|
case FLANN_DIST_L1: |
|
buildIndex< ::cvflann::L1<float> >(index, data, params); |
|
break; |
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES |
|
case FLANN_DIST_MAX: |
|
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params); |
|
break; |
|
case FLANN_DIST_HIST_INTERSECT: |
|
buildIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, params); |
|
break; |
|
case FLANN_DIST_HELLINGER: |
|
buildIndex< ::cvflann::HellingerDistance<float> >(index, data, params); |
|
break; |
|
case FLANN_DIST_CHI_SQUARE: |
|
buildIndex< ::cvflann::ChiSquareDistance<float> >(index, data, params); |
|
break; |
|
case FLANN_DIST_KL: |
|
buildIndex< ::cvflann::KL_Divergence<float> >(index, data, params); |
|
break; |
|
#endif |
|
default: |
|
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type"); |
|
} |
|
} |
|
|
|
template<typename IndexType> void deleteIndex_(void* index) |
|
{ |
|
delete (IndexType*)index; |
|
} |
|
|
|
template<typename Distance> void deleteIndex(void* index) |
|
{ |
|
deleteIndex_< ::cvflann::Index<Distance> >(index); |
|
} |
|
|
|
Index::~Index() |
|
{ |
|
release(); |
|
} |
|
|
|
void Index::release() |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
if( !index ) |
|
return; |
|
|
|
switch( distType ) |
|
{ |
|
case FLANN_DIST_HAMMING: |
|
deleteIndex< HammingDistance >(index); |
|
break; |
|
case FLANN_DIST_L2: |
|
deleteIndex< ::cvflann::L2<float> >(index); |
|
break; |
|
case FLANN_DIST_L1: |
|
deleteIndex< ::cvflann::L1<float> >(index); |
|
break; |
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES |
|
case FLANN_DIST_MAX: |
|
deleteIndex< ::cvflann::MaxDistance<float> >(index); |
|
break; |
|
case FLANN_DIST_HIST_INTERSECT: |
|
deleteIndex< ::cvflann::HistIntersectionDistance<float> >(index); |
|
break; |
|
case FLANN_DIST_HELLINGER: |
|
deleteIndex< ::cvflann::HellingerDistance<float> >(index); |
|
break; |
|
case FLANN_DIST_CHI_SQUARE: |
|
deleteIndex< ::cvflann::ChiSquareDistance<float> >(index); |
|
break; |
|
case FLANN_DIST_KL: |
|
deleteIndex< ::cvflann::KL_Divergence<float> >(index); |
|
break; |
|
#endif |
|
default: |
|
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type"); |
|
} |
|
index = 0; |
|
} |
|
|
|
template<typename Distance, typename IndexType> |
|
void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists, |
|
int knn, const SearchParams& params) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
int type = DataType<ElementType>::type; |
|
int dtype = DataType<DistanceType>::type; |
|
IndexType* index_ = (IndexType*)index; |
|
|
|
CV_Assert((size_t)knn <= index_->size()); |
|
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype); |
|
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous()); |
|
|
|
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols); |
|
::cvflann::Matrix<int> _indices(indices.ptr<int>(), indices.rows, indices.cols); |
|
::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols); |
|
|
|
index_->knnSearch(_query, _indices, _dists, knn, |
|
(const ::cvflann::SearchParams&)get_params(params)); |
|
} |
|
|
|
template<typename Distance> |
|
void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists, |
|
int knn, const SearchParams& params) |
|
{ |
|
runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params); |
|
} |
|
|
|
template<typename Distance, typename IndexType> |
|
int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists, |
|
double radius, const SearchParams& params) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
int type = DataType<ElementType>::type; |
|
int dtype = DataType<DistanceType>::type; |
|
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype); |
|
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous()); |
|
|
|
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols); |
|
::cvflann::Matrix<int> _indices(indices.ptr<int>(), indices.rows, indices.cols); |
|
::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols); |
|
|
|
return ((IndexType*)index)->radiusSearch(_query, _indices, _dists, |
|
saturate_cast<float>(radius), |
|
(const ::cvflann::SearchParams&)get_params(params)); |
|
} |
|
|
|
template<typename Distance> |
|
int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists, |
|
double radius, const SearchParams& params) |
|
{ |
|
return runRadiusSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, radius, params); |
|
} |
|
|
|
|
|
static void createIndicesDists(OutputArray _indices, OutputArray _dists, |
|
Mat& indices, Mat& dists, int rows, |
|
int minCols, int maxCols, int dtype) |
|
{ |
|
if( _indices.needed() ) |
|
{ |
|
indices = _indices.getMat(); |
|
if( !indices.isContinuous() || indices.type() != CV_32S || |
|
indices.rows != rows || indices.cols < minCols || indices.cols > maxCols ) |
|
{ |
|
if( !indices.isContinuous() ) |
|
_indices.release(); |
|
_indices.create( rows, minCols, CV_32S ); |
|
indices = _indices.getMat(); |
|
} |
|
} |
|
else |
|
indices.create( rows, minCols, CV_32S ); |
|
|
|
if( _dists.needed() ) |
|
{ |
|
dists = _dists.getMat(); |
|
if( !dists.isContinuous() || dists.type() != dtype || |
|
dists.rows != rows || dists.cols < minCols || dists.cols > maxCols ) |
|
{ |
|
if( !_dists.isContinuous() ) |
|
_dists.release(); |
|
_dists.create( rows, minCols, dtype ); |
|
dists = _dists.getMat(); |
|
} |
|
} |
|
else |
|
dists.create( rows, minCols, dtype ); |
|
} |
|
|
|
|
|
void Index::knnSearch(InputArray _query, OutputArray _indices, |
|
OutputArray _dists, int knn, const SearchParams& params) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat query = _query.getMat(), indices, dists; |
|
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F; |
|
|
|
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype ); |
|
|
|
switch( distType ) |
|
{ |
|
case FLANN_DIST_HAMMING: |
|
runKnnSearch<HammingDistance>(index, query, indices, dists, knn, params); |
|
break; |
|
case FLANN_DIST_L2: |
|
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
case FLANN_DIST_L1: |
|
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES |
|
case FLANN_DIST_MAX: |
|
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
case FLANN_DIST_HIST_INTERSECT: |
|
runKnnSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
case FLANN_DIST_HELLINGER: |
|
runKnnSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
case FLANN_DIST_CHI_SQUARE: |
|
runKnnSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
case FLANN_DIST_KL: |
|
runKnnSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, knn, params); |
|
break; |
|
#endif |
|
default: |
|
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type"); |
|
} |
|
} |
|
|
|
int Index::radiusSearch(InputArray _query, OutputArray _indices, |
|
OutputArray _dists, double radius, int maxResults, |
|
const SearchParams& params) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat query = _query.getMat(), indices, dists; |
|
int dtype = distType == FLANN_DIST_HAMMING ? CV_32S : CV_32F; |
|
CV_Assert( maxResults > 0 ); |
|
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype ); |
|
|
|
if( algo == FLANN_INDEX_LSH ) |
|
CV_Error( Error::StsNotImplemented, "LSH index does not support radiusSearch operation" ); |
|
|
|
switch( distType ) |
|
{ |
|
case FLANN_DIST_HAMMING: |
|
return runRadiusSearch< HammingDistance >(index, query, indices, dists, radius, params); |
|
|
|
case FLANN_DIST_L2: |
|
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params); |
|
case FLANN_DIST_L1: |
|
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params); |
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES |
|
case FLANN_DIST_MAX: |
|
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params); |
|
case FLANN_DIST_HIST_INTERSECT: |
|
return runRadiusSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, radius, params); |
|
case FLANN_DIST_HELLINGER: |
|
return runRadiusSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, radius, params); |
|
case FLANN_DIST_CHI_SQUARE: |
|
return runRadiusSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, radius, params); |
|
case FLANN_DIST_KL: |
|
return runRadiusSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, radius, params); |
|
#endif |
|
default: |
|
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type"); |
|
} |
|
return -1; |
|
} |
|
|
|
flann_distance_t Index::getDistance() const |
|
{ |
|
return distType; |
|
} |
|
|
|
flann_algorithm_t Index::getAlgorithm() const |
|
{ |
|
return algo; |
|
} |
|
|
|
template<typename IndexType> void saveIndex_(const Index* index0, const void* index, FILE* fout) |
|
{ |
|
IndexType* _index = (IndexType*)index; |
|
::cvflann::save_header(fout, *_index); |
|
// some compilers may store short enumerations as bytes, |
|
// so make sure we always write integers (which are 4-byte values in any modern C compiler) |
|
int idistType = (int)index0->getDistance(); |
|
::cvflann::save_value<int>(fout, idistType); |
|
_index->saveIndex(fout); |
|
} |
|
|
|
template<typename Distance> void saveIndex(const Index* index0, const void* index, FILE* fout) |
|
{ |
|
saveIndex_< ::cvflann::Index<Distance> >(index0, index, fout); |
|
} |
|
|
|
void Index::save(const String& filename) const |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
FILE* fout = fopen(filename.c_str(), "wb"); |
|
if (fout == NULL) |
|
CV_Error_( Error::StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) ); |
|
|
|
switch( distType ) |
|
{ |
|
case FLANN_DIST_HAMMING: |
|
saveIndex< HammingDistance >(this, index, fout); |
|
break; |
|
case FLANN_DIST_L2: |
|
saveIndex< ::cvflann::L2<float> >(this, index, fout); |
|
break; |
|
case FLANN_DIST_L1: |
|
saveIndex< ::cvflann::L1<float> >(this, index, fout); |
|
break; |
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES |
|
case FLANN_DIST_MAX: |
|
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout); |
|
break; |
|
case FLANN_DIST_HIST_INTERSECT: |
|
saveIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, fout); |
|
break; |
|
case FLANN_DIST_HELLINGER: |
|
saveIndex< ::cvflann::HellingerDistance<float> >(this, index, fout); |
|
break; |
|
case FLANN_DIST_CHI_SQUARE: |
|
saveIndex< ::cvflann::ChiSquareDistance<float> >(this, index, fout); |
|
break; |
|
case FLANN_DIST_KL: |
|
saveIndex< ::cvflann::KL_Divergence<float> >(this, index, fout); |
|
break; |
|
#endif |
|
default: |
|
fclose(fout); |
|
fout = 0; |
|
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type"); |
|
} |
|
if( fout ) |
|
fclose(fout); |
|
} |
|
|
|
|
|
template<typename Distance, typename IndexType> |
|
bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance()) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous()); |
|
|
|
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols); |
|
|
|
::cvflann::IndexParams params; |
|
params["algorithm"] = index0->getAlgorithm(); |
|
IndexType* _index = new IndexType(dataset, params, dist); |
|
_index->loadIndex(fin); |
|
index = _index; |
|
return true; |
|
} |
|
|
|
template<typename Distance> |
|
bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance()) |
|
{ |
|
return loadIndex_<Distance, ::cvflann::Index<Distance> >(index0, index, data, fin, dist); |
|
} |
|
|
|
bool Index::load(InputArray _data, const String& filename) |
|
{ |
|
Mat data = _data.getMat(); |
|
bool ok = true; |
|
release(); |
|
FILE* fin = fopen(filename.c_str(), "rb"); |
|
if (fin == NULL) |
|
return false; |
|
|
|
::cvflann::IndexHeader header = ::cvflann::load_header(fin); |
|
algo = header.index_type; |
|
featureType = header.data_type == FLANN_UINT8 ? CV_8U : |
|
header.data_type == FLANN_INT8 ? CV_8S : |
|
header.data_type == FLANN_UINT16 ? CV_16U : |
|
header.data_type == FLANN_INT16 ? CV_16S : |
|
header.data_type == FLANN_INT32 ? CV_32S : |
|
header.data_type == FLANN_FLOAT32 ? CV_32F : |
|
header.data_type == FLANN_FLOAT64 ? CV_64F : -1; |
|
|
|
if( (int)header.rows != data.rows || (int)header.cols != data.cols || |
|
featureType != data.type() ) |
|
{ |
|
fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n", |
|
(int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type()); |
|
fclose(fin); |
|
return false; |
|
} |
|
|
|
int idistType = 0; |
|
::cvflann::load_value(fin, idistType); |
|
distType = (flann_distance_t)idistType; |
|
|
|
if( !((distType == FLANN_DIST_HAMMING && featureType == CV_8U) || |
|
(distType != FLANN_DIST_HAMMING && featureType == CV_32F)) ) |
|
{ |
|
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo); |
|
fclose(fin); |
|
return false; |
|
} |
|
|
|
switch( distType ) |
|
{ |
|
case FLANN_DIST_HAMMING: |
|
loadIndex< HammingDistance >(this, index, data, fin); |
|
break; |
|
case FLANN_DIST_L2: |
|
loadIndex< ::cvflann::L2<float> >(this, index, data, fin); |
|
break; |
|
case FLANN_DIST_L1: |
|
loadIndex< ::cvflann::L1<float> >(this, index, data, fin); |
|
break; |
|
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES |
|
case FLANN_DIST_MAX: |
|
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin); |
|
break; |
|
case FLANN_DIST_HIST_INTERSECT: |
|
loadIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, fin); |
|
break; |
|
case FLANN_DIST_HELLINGER: |
|
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin); |
|
break; |
|
case FLANN_DIST_CHI_SQUARE: |
|
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin); |
|
break; |
|
case FLANN_DIST_KL: |
|
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin); |
|
break; |
|
#endif |
|
default: |
|
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType); |
|
ok = false; |
|
} |
|
|
|
if( fin ) |
|
fclose(fin); |
|
return ok; |
|
} |
|
|
|
} |
|
|
|
}
|
|
|