Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
luz paz 8e8e4bbabc dnn: fix various dnn related typos 3 years ago
..
dnn_model_runner/dnn_conversion Merge pull request #20290 from wjj19950828:add_paddle_humanseg_demo 3 years ago
face_detector Merge pull request #18591 from sl-sergei:download_utilities 4 years ago
results Merge pull request #20422 from fengyuentau:dnn_face 3 years ago
.gitignore Merge pull request #18591 from sl-sergei:download_utilities 4 years ago
CMakeLists.txt Merge pull request #20422 from fengyuentau:dnn_face 3 years ago
README.md fix 4.x links 3 years ago
action_recognition.py
classification.cpp Merge pull request #20406 from MarkGHX:gsoc_2021_webnn 3 years ago
classification.py Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
colorization.cpp dnn: update links for the colorization samples 4 years ago
colorization.py dnn: update links for the colorization samples 4 years ago
common.hpp
common.py
custom_layers.hpp
dasiamrpn_tracker.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
download_models.py Merge pull request #18591 from sl-sergei:download_utilities 4 years ago
edge_detection.py
face_detect.cpp Update documentation 3 years ago
face_detect.py Update documentation 3 years ago
fast_neural_style.py
human_parsing.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
human_parsing.py Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
js_face_recognition.html fix 4.x links 3 years ago
mask_rcnn.py
mobilenet_ssd_accuracy.py
models.yml Merge pull request #18591 from sl-sergei:download_utilities 4 years ago
object_detection.cpp samples: fix build without threading support 3 years ago
object_detection.py Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
openpose.cpp fix 4.x links 3 years ago
openpose.py samples/dnn: better errormsg in openpose.py 4 years ago
optical_flow.py
person_reid.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
person_reid.py Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
scene_text_detection.cpp samples: replace regex 4 years ago
scene_text_recognition.cpp Merge pull request #17570 from HannibalAPE:text_det_recog_demo 4 years ago
scene_text_spotting.cpp Merge pull request #17570 from HannibalAPE:text_det_recog_demo 4 years ago
segmentation.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
segmentation.py Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago
shrink_tf_graph_weights.py
siamrpnpp.py Merge remote-tracking branch 'upstream/3.4' into merge-3.4 3 years ago
speech_recognition.cpp dnn: fix various dnn related typos 3 years ago
speech_recognition.py dnn: fix various dnn related typos 3 years ago
text_detection.cpp Merge pull request #17570 from HannibalAPE:text_det_recog_demo 4 years ago
text_detection.py Merge remote-tracking branch 'upstream/3.4' into merge-3.4 3 years ago
tf_text_graph_common.py Merge pull request #19417 from LupusSanctus:am/text_graph_identity 4 years ago
tf_text_graph_efficientdet.py
tf_text_graph_faster_rcnn.py
tf_text_graph_mask_rcnn.py
tf_text_graph_ssd.py Use ==/!= to compare constant literals (str, bytes, int, float, tuple) 3 years ago
virtual_try_on.py Merge pull request #20175 from rogday:dnn_samples_cuda 4 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Sample models

You can download sample models using download_models.py. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:

python download_models.py --save_dir FaceDetector opencv_fd

You can use default configuration files adopted for OpenCV from here.

You also can use the script to download necessary files from your code. Assume you have the following code inside your_script.py:

from download_models import downloadFile

filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
print(filepath1)
print(filepath2)
# Your code

By running the following commands, you will get MobileNetSSD_deploy.caffemodel file:

export OPENCV_DOWNLOAD_DATA_PATH=download_folder
python your_script.py

Note that you can provide a directory using save_dir parameter or via OPENCV_SAVE_DIR environment variable.

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References