Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
787 lines
27 KiB
787 lines
27 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#include <opencv2/core/utils/logger.hpp> |
|
|
|
#include <opencv2/core/utils/configuration.private.hpp> |
|
|
|
#include <vector> |
|
#include <iostream> |
|
|
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include "opencl_kernels_imgproc.hpp" |
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
#include "filter.hpp" |
|
|
|
#include "opencv2/core/softfloat.hpp" |
|
|
|
namespace cv { |
|
#include "fixedpoint.inl.hpp" |
|
} |
|
|
|
#include "smooth.simd.hpp" |
|
#include "smooth.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
|
|
|
namespace cv { |
|
|
|
/****************************************************************************************\ |
|
Gaussian Blur |
|
\****************************************************************************************/ |
|
|
|
/** |
|
* Bit-exact in terms of softfloat computations |
|
* |
|
* returns sum of kernel values. Should be equal to 1.0 |
|
*/ |
|
static |
|
softdouble getGaussianKernelBitExact(std::vector<softdouble>& result, int n, double sigma) |
|
{ |
|
CV_Assert(n > 0); |
|
//TODO: incorrect SURF implementation requests kernel with n = 20 (PATCH_SZ): https://github.com/opencv/opencv/issues/15856 |
|
//CV_Assert((n & 1) == 1); // odd |
|
|
|
if (sigma <= 0) |
|
{ |
|
if (n == 1) |
|
{ |
|
result = std::vector<softdouble>(1, softdouble::one()); |
|
return softdouble::one(); |
|
} |
|
else if (n == 3) |
|
{ |
|
softdouble v3[] = { |
|
softdouble::fromRaw(0x3fd0000000000000), // 0.25 |
|
softdouble::fromRaw(0x3fe0000000000000), // 0.5 |
|
softdouble::fromRaw(0x3fd0000000000000) // 0.25 |
|
}; |
|
result.assign(v3, v3 + 3); |
|
return softdouble::one(); |
|
} |
|
else if (n == 5) |
|
{ |
|
softdouble v5[] = { |
|
softdouble::fromRaw(0x3fb0000000000000), // 0.0625 |
|
softdouble::fromRaw(0x3fd0000000000000), // 0.25 |
|
softdouble::fromRaw(0x3fd8000000000000), // 0.375 |
|
softdouble::fromRaw(0x3fd0000000000000), // 0.25 |
|
softdouble::fromRaw(0x3fb0000000000000) // 0.0625 |
|
}; |
|
result.assign(v5, v5 + 5); |
|
return softdouble::one(); |
|
} |
|
else if (n == 7) |
|
{ |
|
softdouble v7[] = { |
|
softdouble::fromRaw(0x3fa0000000000000), // 0.03125 |
|
softdouble::fromRaw(0x3fbc000000000000), // 0.109375 |
|
softdouble::fromRaw(0x3fcc000000000000), // 0.21875 |
|
softdouble::fromRaw(0x3fd2000000000000), // 0.28125 |
|
softdouble::fromRaw(0x3fcc000000000000), // 0.21875 |
|
softdouble::fromRaw(0x3fbc000000000000), // 0.109375 |
|
softdouble::fromRaw(0x3fa0000000000000) // 0.03125 |
|
}; |
|
result.assign(v7, v7 + 7); |
|
return softdouble::one(); |
|
} |
|
else if (n == 9) |
|
{ |
|
softdouble v9[] = { |
|
softdouble::fromRaw(0x3f90000000000000), // 4 / 256 |
|
softdouble::fromRaw(0x3faa000000000000), // 13 / 256 |
|
softdouble::fromRaw(0x3fbe000000000000), // 30 / 256 |
|
softdouble::fromRaw(0x3fc9800000000000), // 51 / 256 |
|
softdouble::fromRaw(0x3fce000000000000), // 60 / 256 |
|
softdouble::fromRaw(0x3fc9800000000000), // 51 / 256 |
|
softdouble::fromRaw(0x3fbe000000000000), // 30 / 256 |
|
softdouble::fromRaw(0x3faa000000000000), // 13 / 256 |
|
softdouble::fromRaw(0x3f90000000000000) // 4 / 256 |
|
}; |
|
result.assign(v9, v9 + 9); |
|
return softdouble::one(); |
|
} |
|
} |
|
|
|
softdouble sd_0_15 = softdouble::fromRaw(0x3fc3333333333333); // 0.15 |
|
softdouble sd_0_35 = softdouble::fromRaw(0x3fd6666666666666); // 0.35 |
|
softdouble sd_minus_0_125 = softdouble::fromRaw(0xbfc0000000000000); // -0.5*0.25 |
|
|
|
softdouble sigmaX = sigma > 0 ? softdouble(sigma) : mulAdd(softdouble(n), sd_0_15, sd_0_35);// softdouble(((n-1)*0.5 - 1)*0.3 + 0.8) |
|
softdouble scale2X = sd_minus_0_125/(sigmaX*sigmaX); |
|
|
|
int n2_ = (n - 1) / 2; |
|
cv::AutoBuffer<softdouble> values(n2_ + 1); |
|
softdouble sum = softdouble::zero(); |
|
for (int i = 0, x = 1 - n; i < n2_; i++, x+=2) |
|
{ |
|
// x = i - (n - 1)*0.5 |
|
// t = std::exp(scale2X*x*x) |
|
softdouble t = exp(softdouble(x*x)*scale2X); |
|
values[i] = t; |
|
sum += t; |
|
} |
|
sum *= softdouble(2); |
|
//values[n2_] = softdouble::one(); // x=0 in exp(softdouble(x*x)*scale2X); |
|
sum += softdouble::one(); |
|
if ((n & 1) == 0) |
|
{ |
|
//values[n2_ + 1] = softdouble::one(); |
|
sum += softdouble::one(); |
|
} |
|
|
|
// normalize: sum(k[i]) = 1 |
|
softdouble mul1 = softdouble::one()/sum; |
|
|
|
result.resize(n); |
|
|
|
softdouble sum2 = softdouble::zero(); |
|
for (int i = 0; i < n2_; i++ ) |
|
{ |
|
softdouble t = values[i] * mul1; |
|
result[i] = t; |
|
result[n - 1 - i] = t; |
|
sum2 += t; |
|
} |
|
sum2 *= softdouble(2); |
|
result[n2_] = /*values[n2_]*/ softdouble::one() * mul1; |
|
sum2 += result[n2_]; |
|
if ((n & 1) == 0) |
|
{ |
|
result[n2_ + 1] = result[n2_]; |
|
sum2 += result[n2_]; |
|
} |
|
|
|
return sum2; |
|
} |
|
|
|
Mat getGaussianKernel(int n, double sigma, int ktype) |
|
{ |
|
CV_CheckDepth(ktype, ktype == CV_32F || ktype == CV_64F, ""); |
|
Mat kernel(n, 1, ktype); |
|
|
|
std::vector<softdouble> kernel_bitexact; |
|
getGaussianKernelBitExact(kernel_bitexact, n, sigma); |
|
|
|
if (ktype == CV_32F) |
|
{ |
|
for (int i = 0; i < n; i++) |
|
kernel.at<float>(i) = (float)kernel_bitexact[i]; |
|
} |
|
else |
|
{ |
|
CV_DbgAssert(ktype == CV_64F); |
|
for (int i = 0; i < n; i++) |
|
kernel.at<double>(i) = kernel_bitexact[i]; |
|
} |
|
|
|
return kernel; |
|
} |
|
|
|
static |
|
softdouble getGaussianKernelFixedPoint_ED(CV_OUT std::vector<int64_t>& result, const std::vector<softdouble> kernel_bitexact, int fractionBits) |
|
{ |
|
const int n = (int)kernel_bitexact.size(); |
|
CV_Assert((n & 1) == 1); // odd |
|
|
|
CV_CheckGT(fractionBits, 0, ""); |
|
CV_CheckLE(fractionBits, 32, ""); |
|
|
|
int64_t fractionMultiplier = CV_BIG_INT(1) << fractionBits; |
|
softdouble fractionMultiplier_sd(fractionMultiplier); |
|
|
|
result.resize(n); |
|
|
|
int n2_ = n / 2; // n is odd |
|
softdouble err = softdouble::zero(); |
|
int64_t sum = 0; |
|
for (int i = 0; i < n2_; i++) |
|
{ |
|
//softdouble err0 = err; |
|
softdouble adj_v = kernel_bitexact[i] * fractionMultiplier_sd + err; |
|
int64_t v0 = cvRound(adj_v); // cvFloor() provides bad results |
|
err = adj_v - softdouble(v0); |
|
//printf("%3d: adj_v=%8.3f(%8.3f+%8.3f) v0=%d ed_err=%8.3f\n", i, (double)adj_v, (double)(kernel_bitexact[i] * fractionMultiplier_sd), (double)err0, (int)v0, (double)err); |
|
|
|
result[i] = v0; |
|
result[n - 1 - i] = v0; |
|
sum += v0; |
|
} |
|
sum *= 2; |
|
softdouble adj_v_center = kernel_bitexact[n2_] * fractionMultiplier_sd + err; |
|
int64_t v_center = fractionMultiplier - sum; |
|
result[n2_] = v_center; |
|
//printf("center = %g ===> %g ===> %g\n", (double)(kernel_bitexact[n2_] * fractionMultiplier), (double)adj_v_center, (double)v_center); |
|
return (adj_v_center - softdouble(v_center)); |
|
} |
|
|
|
static void getGaussianKernel(int n, double sigma, int ktype, Mat& res) { res = getGaussianKernel(n, sigma, ktype); } |
|
template <typename FT> static void getGaussianKernel(int n, double sigma, int, std::vector<FT>& res) |
|
{ |
|
std::vector<softdouble> res_sd; |
|
softdouble s0 = getGaussianKernelBitExact(res_sd, n, sigma); |
|
CV_UNUSED(s0); |
|
|
|
std::vector<int64_t> fixed_256; |
|
softdouble approx_err = getGaussianKernelFixedPoint_ED(fixed_256, res_sd, FT::fixedShift); |
|
CV_UNUSED(approx_err); |
|
|
|
res.resize(n); |
|
for (int i = 0; i < n; i++) |
|
{ |
|
res[i] = FT::fromRaw((typename FT::raw_t)fixed_256[i]); |
|
//printf("%03d: %d\n", i, res[i].raw()); |
|
} |
|
} |
|
|
|
template <typename T> |
|
static void createGaussianKernels( T & kx, T & ky, int type, Size &ksize, |
|
double sigma1, double sigma2 ) |
|
{ |
|
int depth = CV_MAT_DEPTH(type); |
|
if( sigma2 <= 0 ) |
|
sigma2 = sigma1; |
|
|
|
// automatic detection of kernel size from sigma |
|
if( ksize.width <= 0 && sigma1 > 0 ) |
|
ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1; |
|
if( ksize.height <= 0 && sigma2 > 0 ) |
|
ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1; |
|
|
|
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 && |
|
ksize.height > 0 && ksize.height % 2 == 1 ); |
|
|
|
sigma1 = std::max( sigma1, 0. ); |
|
sigma2 = std::max( sigma2, 0. ); |
|
|
|
getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F), kx ); |
|
if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON ) |
|
ky = kx; |
|
else |
|
getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F), ky ); |
|
} |
|
|
|
Ptr<FilterEngine> createGaussianFilter( int type, Size ksize, |
|
double sigma1, double sigma2, |
|
int borderType ) |
|
{ |
|
Mat kx, ky; |
|
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); |
|
|
|
return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType ); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_GaussianBlur_8UC1(InputArray _src, OutputArray _dst, Size ksize, int ddepth, |
|
InputArray _kernelX, InputArray _kernelY, int borderType) |
|
{ |
|
const ocl::Device & dev = ocl::Device::getDefault(); |
|
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
if ( !(dev.isIntel() && (type == CV_8UC1) && |
|
(_src.offset() == 0) && (_src.step() % 4 == 0) && |
|
((ksize.width == 5 && (_src.cols() % 4 == 0)) || |
|
(ksize.width == 3 && (_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)))) ) |
|
return false; |
|
|
|
Mat kernelX = _kernelX.getMat().reshape(1, 1); |
|
if (kernelX.cols % 2 != 1) |
|
return false; |
|
Mat kernelY = _kernelY.getMat().reshape(1, 1); |
|
if (kernelY.cols % 2 != 1) |
|
return false; |
|
|
|
if (ddepth < 0) |
|
ddepth = sdepth; |
|
|
|
Size size = _src.size(); |
|
size_t globalsize[2] = { 0, 0 }; |
|
size_t localsize[2] = { 0, 0 }; |
|
|
|
if (ksize.width == 3) |
|
{ |
|
globalsize[0] = size.width / 16; |
|
globalsize[1] = size.height / 2; |
|
} |
|
else if (ksize.width == 5) |
|
{ |
|
globalsize[0] = size.width / 4; |
|
globalsize[1] = size.height / 1; |
|
} |
|
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" }; |
|
char build_opts[1024]; |
|
snprintf(build_opts, sizeof(build_opts), "-D %s %s%s", borderMap[borderType & ~BORDER_ISOLATED], |
|
ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(), |
|
ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str()); |
|
|
|
ocl::Kernel kernel; |
|
|
|
if (ksize.width == 3) |
|
kernel.create("gaussianBlur3x3_8UC1_cols16_rows2", cv::ocl::imgproc::gaussianBlur3x3_oclsrc, build_opts); |
|
else if (ksize.width == 5) |
|
kernel.create("gaussianBlur5x5_8UC1_cols4", cv::ocl::imgproc::gaussianBlur5x5_oclsrc, build_opts); |
|
|
|
if (kernel.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(size, CV_MAKETYPE(ddepth, cn)); |
|
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0)) |
|
return false; |
|
UMat dst = _dst.getUMat(); |
|
|
|
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src)); |
|
idxArg = kernel.set(idxArg, (int)src.step); |
|
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst)); |
|
idxArg = kernel.set(idxArg, (int)dst.step); |
|
idxArg = kernel.set(idxArg, (int)dst.rows); |
|
idxArg = kernel.set(idxArg, (int)dst.cols); |
|
|
|
return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false); |
|
} |
|
|
|
#endif |
|
|
|
#ifdef HAVE_OPENVX |
|
|
|
namespace ovx { |
|
template <> inline bool skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(int w, int h) { return w*h < 320 * 240; } |
|
} |
|
static bool openvx_gaussianBlur(InputArray _src, OutputArray _dst, Size ksize, |
|
double sigma1, double sigma2, int borderType) |
|
{ |
|
if (sigma2 <= 0) |
|
sigma2 = sigma1; |
|
// automatic detection of kernel size from sigma |
|
if (ksize.width <= 0 && sigma1 > 0) |
|
ksize.width = cvRound(sigma1*6 + 1) | 1; |
|
if (ksize.height <= 0 && sigma2 > 0) |
|
ksize.height = cvRound(sigma2*6 + 1) | 1; |
|
|
|
if (_src.type() != CV_8UC1 || |
|
_src.cols() < 3 || _src.rows() < 3 || |
|
ksize.width != 3 || ksize.height != 3) |
|
return false; |
|
|
|
sigma1 = std::max(sigma1, 0.); |
|
sigma2 = std::max(sigma2, 0.); |
|
|
|
if (!(sigma1 == 0.0 || (sigma1 - 0.8) < DBL_EPSILON) || !(sigma2 == 0.0 || (sigma2 - 0.8) < DBL_EPSILON) || |
|
ovx::skipSmallImages<VX_KERNEL_GAUSSIAN_3x3>(_src.cols(), _src.rows())) |
|
return false; |
|
|
|
Mat src = _src.getMat(); |
|
Mat dst = _dst.getMat(); |
|
|
|
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix()) |
|
return false; //Process isolated borders only |
|
vx_enum border; |
|
switch (borderType & ~BORDER_ISOLATED) |
|
{ |
|
case BORDER_CONSTANT: |
|
border = VX_BORDER_CONSTANT; |
|
break; |
|
case BORDER_REPLICATE: |
|
border = VX_BORDER_REPLICATE; |
|
break; |
|
default: |
|
return false; |
|
} |
|
|
|
try |
|
{ |
|
ivx::Context ctx = ovx::getOpenVXContext(); |
|
|
|
Mat a; |
|
if (dst.data != src.data) |
|
a = src; |
|
else |
|
src.copyTo(a); |
|
|
|
ivx::Image |
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(a.cols, a.rows, 1, (vx_int32)(a.step)), a.data), |
|
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(dst.cols, dst.rows, 1, (vx_int32)(dst.step)), dst.data); |
|
|
|
//ATTENTION: VX_CONTEXT_IMMEDIATE_BORDER attribute change could lead to strange issues in multi-threaded environments |
|
//since OpenVX standard says nothing about thread-safety for now |
|
ivx::border_t prevBorder = ctx.immediateBorder(); |
|
ctx.setImmediateBorder(border, (vx_uint8)(0)); |
|
ivx::IVX_CHECK_STATUS(vxuGaussian3x3(ctx, ia, ib)); |
|
ctx.setImmediateBorder(prevBorder); |
|
} |
|
catch (const ivx::RuntimeError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch (const ivx::WrapperError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
#if defined ENABLE_IPP_GAUSSIAN_BLUR // see CMake's OPENCV_IPP_GAUSSIAN_BLUR option |
|
|
|
#define IPP_DISABLE_GAUSSIAN_BLUR_LARGE_KERNELS_1TH 1 |
|
#define IPP_DISABLE_GAUSSIAN_BLUR_16SC4_1TH 1 |
|
#define IPP_DISABLE_GAUSSIAN_BLUR_32FC4_1TH 1 |
|
|
|
// IW 2017u2 has bug which doesn't allow use of partial inMem with tiling |
|
#if IPP_VERSION_X100 < 201900 |
|
#define IPP_GAUSSIANBLUR_PARALLEL 0 |
|
#else |
|
#define IPP_GAUSSIANBLUR_PARALLEL 1 |
|
#endif |
|
|
|
#ifdef HAVE_IPP_IW |
|
|
|
class ipp_gaussianBlurParallel: public ParallelLoopBody |
|
{ |
|
public: |
|
ipp_gaussianBlurParallel(::ipp::IwiImage &src, ::ipp::IwiImage &dst, int kernelSize, float sigma, ::ipp::IwiBorderType &border, bool *pOk): |
|
m_src(src), m_dst(dst), m_kernelSize(kernelSize), m_sigma(sigma), m_border(border), m_pOk(pOk) { |
|
*m_pOk = true; |
|
} |
|
~ipp_gaussianBlurParallel() |
|
{ |
|
} |
|
|
|
virtual void operator() (const Range& range) const CV_OVERRIDE |
|
{ |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
if(!*m_pOk) |
|
return; |
|
|
|
try |
|
{ |
|
::ipp::IwiTile tile = ::ipp::IwiRoi(0, range.start, m_dst.m_size.width, range.end - range.start); |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, m_src, m_dst, m_kernelSize, m_sigma, ::ipp::IwDefault(), m_border, tile); |
|
} |
|
catch(const ::ipp::IwException &) |
|
{ |
|
*m_pOk = false; |
|
return; |
|
} |
|
} |
|
private: |
|
::ipp::IwiImage &m_src; |
|
::ipp::IwiImage &m_dst; |
|
|
|
int m_kernelSize; |
|
float m_sigma; |
|
::ipp::IwiBorderType &m_border; |
|
|
|
volatile bool *m_pOk; |
|
const ipp_gaussianBlurParallel& operator= (const ipp_gaussianBlurParallel&); |
|
}; |
|
|
|
#endif |
|
|
|
static bool ipp_GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, |
|
double sigma1, double sigma2, int borderType ) |
|
{ |
|
#ifdef HAVE_IPP_IW |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
#if IPP_VERSION_X100 < 201800 && ((defined _MSC_VER && defined _M_IX86) || (defined __GNUC__ && defined __i386__)) |
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); |
|
return false; // bug on ia32 |
|
#else |
|
if(sigma1 != sigma2) |
|
return false; |
|
|
|
if(sigma1 < FLT_EPSILON) |
|
return false; |
|
|
|
if(ksize.width != ksize.height) |
|
return false; |
|
|
|
// Acquire data and begin processing |
|
try |
|
{ |
|
Mat src = _src.getMat(); |
|
Mat dst = _dst.getMat(); |
|
::ipp::IwiImage iwSrc = ippiGetImage(src); |
|
::ipp::IwiImage iwDst = ippiGetImage(dst); |
|
::ipp::IwiBorderSize borderSize = ::ipp::iwiSizeToBorderSize(ippiGetSize(ksize)); |
|
::ipp::IwiBorderType ippBorder(ippiGetBorder(iwSrc, borderType, borderSize)); |
|
if(!ippBorder) |
|
return false; |
|
|
|
const int threads = ippiSuggestThreadsNum(iwDst, 2); |
|
|
|
if (IPP_DISABLE_GAUSSIAN_BLUR_LARGE_KERNELS_1TH && (threads == 1 && ksize.width > 25)) |
|
return false; |
|
if (IPP_DISABLE_GAUSSIAN_BLUR_16SC4_1TH && (threads == 1 && src.type() == CV_16SC4)) |
|
return false; |
|
if (IPP_DISABLE_GAUSSIAN_BLUR_32FC4_1TH && (threads == 1 && src.type() == CV_32FC4)) |
|
return false; |
|
|
|
if(IPP_GAUSSIANBLUR_PARALLEL && threads > 1 && iwSrc.m_size.height/(threads * 4) >= ksize.height/2) { |
|
bool ok; |
|
ipp_gaussianBlurParallel invoker(iwSrc, iwDst, ksize.width, (float) sigma1, ippBorder, &ok); |
|
|
|
if(!ok) |
|
return false; |
|
const Range range(0, (int) iwDst.m_size.height); |
|
parallel_for_(range, invoker, threads*4); |
|
|
|
if(!ok) |
|
return false; |
|
} else { |
|
CV_INSTRUMENT_FUN_IPP(::ipp::iwiFilterGaussian, iwSrc, iwDst, ksize.width, sigma1, ::ipp::IwDefault(), ippBorder); |
|
} |
|
} |
|
catch (const ::ipp::IwException &) |
|
{ |
|
return false; |
|
} |
|
|
|
return true; |
|
#endif |
|
#else |
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ksize); CV_UNUSED(sigma1); CV_UNUSED(sigma2); CV_UNUSED(borderType); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
|
|
template<typename T> |
|
static bool validateGaussianBlurKernel(std::vector<T>& kernel) |
|
{ |
|
softdouble validation_sum = softdouble::zero(); |
|
for (size_t i = 0; i < kernel.size(); i++) |
|
{ |
|
validation_sum += softdouble((double)kernel[i]); |
|
} |
|
|
|
bool isValid = validation_sum == softdouble::one(); |
|
return isValid; |
|
} |
|
|
|
void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize, |
|
double sigma1, double sigma2, |
|
int borderType) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert(!_src.empty()); |
|
|
|
int type = _src.type(); |
|
Size size = _src.size(); |
|
_dst.create( size, type ); |
|
|
|
if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT && |
|
((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) ) |
|
{ |
|
if( size.height == 1 ) |
|
ksize.height = 1; |
|
if( size.width == 1 ) |
|
ksize.width = 1; |
|
} |
|
|
|
if( ksize.width == 1 && ksize.height == 1 ) |
|
{ |
|
_src.copyTo(_dst); |
|
return; |
|
} |
|
|
|
bool useOpenCL = ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && |
|
_src.rows() >= ksize.height && _src.cols() >= ksize.width && |
|
ksize.width > 1 && ksize.height > 1; |
|
CV_UNUSED(useOpenCL); |
|
|
|
int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); |
|
|
|
Mat kx, ky; |
|
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); |
|
|
|
CV_OCL_RUN(useOpenCL && sdepth == CV_8U && |
|
((ksize.width == 3 && ksize.height == 3) || |
|
(ksize.width == 5 && ksize.height == 5)), |
|
ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType) |
|
); |
|
|
|
if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.isSubmatrix())) |
|
{ |
|
std::vector<ufixedpoint16> fkx, fky; |
|
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2); |
|
|
|
static bool param_check_gaussian_blur_bitexact_kernels = utils::getConfigurationParameterBool("OPENCV_GAUSSIANBLUR_CHECK_BITEXACT_KERNELS", false); |
|
if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fkx)) |
|
{ |
|
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fx kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); |
|
} |
|
else if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fky)) |
|
{ |
|
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fy kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); |
|
} |
|
else |
|
{ |
|
CV_OCL_RUN(useOpenCL, |
|
ocl_sepFilter2D_BitExact(_src, _dst, sdepth, |
|
ksize, |
|
(const uint16_t*)&fkx[0], (const uint16_t*)&fky[0], |
|
Point(-1, -1), 0, borderType, |
|
8/*shift_bits*/) |
|
); |
|
|
|
Mat src = _src.getMat(); |
|
Mat dst = _dst.getMat(); |
|
|
|
if (src.data == dst.data) |
|
src = src.clone(); |
|
CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint16_t*)&fkx[0], (int)fkx.size(), (const uint16_t*)&fky[0], (int)fky.size(), borderType), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
return; |
|
} |
|
} |
|
if(sdepth == CV_16U && ((borderType & BORDER_ISOLATED) || !_src.isSubmatrix())) |
|
{ |
|
CV_LOG_INFO(NULL, "GaussianBlur: running bit-exact version..."); |
|
|
|
std::vector<ufixedpoint32> fkx, fky; |
|
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2); |
|
|
|
static bool param_check_gaussian_blur_bitexact_kernels = utils::getConfigurationParameterBool("OPENCV_GAUSSIANBLUR_CHECK_BITEXACT_KERNELS", false); |
|
if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fkx)) |
|
{ |
|
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fx kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); |
|
} |
|
else if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fky)) |
|
{ |
|
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fy kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2)); |
|
} |
|
else |
|
{ |
|
// TODO: implement ocl_sepFilter2D_BitExact -- how to deal with bdepth? |
|
// CV_OCL_RUN(useOpenCL, |
|
// ocl_sepFilter2D_BitExact(_src, _dst, sdepth, |
|
// ksize, |
|
// (const uint32_t*)&fkx[0], (const uint32_t*)&fky[0], |
|
// Point(-1, -1), 0, borderType, |
|
// 16/*shift_bits*/) |
|
// ); |
|
|
|
Mat src = _src.getMat(); |
|
Mat dst = _dst.getMat(); |
|
|
|
if (src.data == dst.data) |
|
src = src.clone(); |
|
CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint32_t*)&fkx[0], (int)fkx.size(), (const uint32_t*)&fky[0], (int)fky.size(), borderType), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
return; |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
if (useOpenCL) |
|
{ |
|
sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); |
|
return; |
|
} |
|
#endif |
|
|
|
Mat src = _src.getMat(); |
|
Mat dst = _dst.getMat(); |
|
|
|
Point ofs; |
|
Size wsz(src.cols, src.rows); |
|
if(!(borderType & BORDER_ISOLATED)) |
|
src.locateROI( wsz, ofs ); |
|
|
|
CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn, |
|
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height, |
|
sigma1, sigma2, borderType&~BORDER_ISOLATED); |
|
|
|
CV_OVX_RUN(true, |
|
openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)) |
|
|
|
#if defined ENABLE_IPP_GAUSSIAN_BLUR |
|
// IPP is not bit-exact to OpenCV implementation |
|
CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType)); |
|
#endif |
|
|
|
sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType); |
|
} |
|
|
|
} // namespace |
|
|
|
////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
CV_IMPL void |
|
cvSmooth( const void* srcarr, void* dstarr, int smooth_type, |
|
int param1, int param2, double param3, double param4 ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0; |
|
|
|
CV_Assert( dst.size() == src.size() && |
|
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) ); |
|
|
|
if( param2 <= 0 ) |
|
param2 = param1; |
|
|
|
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE ) |
|
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1), |
|
smooth_type == CV_BLUR, cv::BORDER_REPLICATE ); |
|
else if( smooth_type == CV_GAUSSIAN ) |
|
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE ); |
|
else if( smooth_type == CV_MEDIAN ) |
|
cv::medianBlur( src, dst, param1 ); |
|
else |
|
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE ); |
|
|
|
if( dst.data != dst0.data ) |
|
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" ); |
|
} |
|
|
|
/* End of file. */
|
|
|