mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
12 KiB
304 lines
12 KiB
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include "opencv2/nonfree/nonfree.hpp" |
|
|
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static void help(char** argv) |
|
{ |
|
cout << "\nThis program demonstrats keypoint finding and matching between 2 images using features2d framework.\n" |
|
<< " In one case, the 2nd image is synthesized by homography from the first, in the second case, there are 2 images\n" |
|
<< "\n" |
|
<< "Case1: second image is obtained from the first (given) image using random generated homography matrix\n" |
|
<< argv[0] << " [detectorType] [descriptorType] [matcherType] [matcherFilterType] [image] [evaluate(0 or 1)]\n" |
|
<< "Example of case1:\n" |
|
<< "./descriptor_extractor_matcher SURF SURF FlannBased NoneFilter cola.jpg 0\n" |
|
<< "\n" |
|
<< "Case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated\n" |
|
<< argv[0] << " [detectorType] [descriptorType] [matcherType] [matcherFilterType] [image1] [image2] [ransacReprojThreshold]\n" |
|
<< "\n" |
|
<< "Matches are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)\n" |
|
<< "Example of case2:\n" |
|
<< "./descriptor_extractor_matcher SURF SURF BruteForce CrossCheckFilter cola1.jpg cola2.jpg 3\n" |
|
<< "\n" |
|
<< "Possible detectorType values: see in documentation on createFeatureDetector().\n" |
|
<< "Possible descriptorType values: see in documentation on createDescriptorExtractor().\n" |
|
<< "Possible matcherType values: see in documentation on createDescriptorMatcher().\n" |
|
<< "Possible matcherFilterType values: NoneFilter, CrossCheckFilter." << endl; |
|
} |
|
|
|
#define DRAW_RICH_KEYPOINTS_MODE 0 |
|
#define DRAW_OUTLIERS_MODE 0 |
|
|
|
const string winName = "correspondences"; |
|
|
|
enum { NONE_FILTER = 0, CROSS_CHECK_FILTER = 1 }; |
|
|
|
static int getMatcherFilterType( const string& str ) |
|
{ |
|
if( str == "NoneFilter" ) |
|
return NONE_FILTER; |
|
if( str == "CrossCheckFilter" ) |
|
return CROSS_CHECK_FILTER; |
|
CV_Error(Error::StsBadArg, "Invalid filter name"); |
|
return -1; |
|
} |
|
|
|
static void simpleMatching( Ptr<DescriptorMatcher>& descriptorMatcher, |
|
const Mat& descriptors1, const Mat& descriptors2, |
|
vector<DMatch>& matches12 ) |
|
{ |
|
vector<DMatch> matches; |
|
descriptorMatcher->match( descriptors1, descriptors2, matches12 ); |
|
} |
|
|
|
static void crossCheckMatching( Ptr<DescriptorMatcher>& descriptorMatcher, |
|
const Mat& descriptors1, const Mat& descriptors2, |
|
vector<DMatch>& filteredMatches12, int knn=1 ) |
|
{ |
|
filteredMatches12.clear(); |
|
vector<vector<DMatch> > matches12, matches21; |
|
descriptorMatcher->knnMatch( descriptors1, descriptors2, matches12, knn ); |
|
descriptorMatcher->knnMatch( descriptors2, descriptors1, matches21, knn ); |
|
for( size_t m = 0; m < matches12.size(); m++ ) |
|
{ |
|
bool findCrossCheck = false; |
|
for( size_t fk = 0; fk < matches12[m].size(); fk++ ) |
|
{ |
|
DMatch forward = matches12[m][fk]; |
|
|
|
for( size_t bk = 0; bk < matches21[forward.trainIdx].size(); bk++ ) |
|
{ |
|
DMatch backward = matches21[forward.trainIdx][bk]; |
|
if( backward.trainIdx == forward.queryIdx ) |
|
{ |
|
filteredMatches12.push_back(forward); |
|
findCrossCheck = true; |
|
break; |
|
} |
|
} |
|
if( findCrossCheck ) break; |
|
} |
|
} |
|
} |
|
|
|
static void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG& rng ) |
|
{ |
|
H.create(3, 3, CV_32FC1); |
|
H.at<float>(0,0) = rng.uniform( 0.8f, 1.2f); |
|
H.at<float>(0,1) = rng.uniform(-0.1f, 0.1f); |
|
H.at<float>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols; |
|
H.at<float>(1,0) = rng.uniform(-0.1f, 0.1f); |
|
H.at<float>(1,1) = rng.uniform( 0.8f, 1.2f); |
|
H.at<float>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows; |
|
H.at<float>(2,0) = rng.uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,1) = rng.uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,2) = rng.uniform( 0.8f, 1.2f); |
|
|
|
warpPerspective( src, dst, H, src.size() ); |
|
} |
|
|
|
static void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, |
|
vector<KeyPoint>& keypoints1, const Mat& descriptors1, |
|
Ptr<FeatureDetector>& detector, Ptr<DescriptorExtractor>& descriptorExtractor, |
|
Ptr<DescriptorMatcher>& descriptorMatcher, int matcherFilter, bool eval, |
|
double ransacReprojThreshold, RNG& rng ) |
|
{ |
|
CV_Assert( !img1.empty() ); |
|
Mat H12; |
|
if( isWarpPerspective ) |
|
warpPerspectiveRand(img1, img2, H12, rng ); |
|
else |
|
CV_Assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ ); |
|
|
|
cout << endl << "< Extracting keypoints from second image..." << endl; |
|
vector<KeyPoint> keypoints2; |
|
detector->detect( img2, keypoints2 ); |
|
cout << keypoints2.size() << " points" << endl << ">" << endl; |
|
|
|
if( !H12.empty() && eval ) |
|
{ |
|
cout << "< Evaluate feature detector..." << endl; |
|
float repeatability; |
|
int correspCount; |
|
evaluateFeatureDetector( img1, img2, H12, &keypoints1, &keypoints2, repeatability, correspCount ); |
|
cout << "repeatability = " << repeatability << endl; |
|
cout << "correspCount = " << correspCount << endl; |
|
cout << ">" << endl; |
|
} |
|
|
|
cout << "< Computing descriptors for keypoints from second image..." << endl; |
|
Mat descriptors2; |
|
descriptorExtractor->compute( img2, keypoints2, descriptors2 ); |
|
cout << ">" << endl; |
|
|
|
cout << "< Matching descriptors..." << endl; |
|
vector<DMatch> filteredMatches; |
|
switch( matcherFilter ) |
|
{ |
|
case CROSS_CHECK_FILTER : |
|
crossCheckMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches, 1 ); |
|
break; |
|
default : |
|
simpleMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches ); |
|
} |
|
cout << ">" << endl; |
|
|
|
if( !H12.empty() && eval ) |
|
{ |
|
cout << "< Evaluate descriptor matcher..." << endl; |
|
vector<Point2f> curve; |
|
Ptr<GenericDescriptorMatcher> gdm = new VectorDescriptorMatcher( descriptorExtractor, descriptorMatcher ); |
|
evaluateGenericDescriptorMatcher( img1, img2, H12, keypoints1, keypoints2, 0, 0, curve, gdm ); |
|
|
|
Point2f firstPoint = *curve.begin(); |
|
Point2f lastPoint = *curve.rbegin(); |
|
int prevPointIndex = -1; |
|
cout << "1-precision = " << firstPoint.x << "; recall = " << firstPoint.y << endl; |
|
for( float l_p = 0; l_p <= 1 + FLT_EPSILON; l_p+=0.05f ) |
|
{ |
|
int nearest = getNearestPoint( curve, l_p ); |
|
if( nearest >= 0 ) |
|
{ |
|
Point2f curPoint = curve[nearest]; |
|
if( curPoint.x > firstPoint.x && curPoint.x < lastPoint.x && nearest != prevPointIndex ) |
|
{ |
|
cout << "1-precision = " << curPoint.x << "; recall = " << curPoint.y << endl; |
|
prevPointIndex = nearest; |
|
} |
|
} |
|
} |
|
cout << "1-precision = " << lastPoint.x << "; recall = " << lastPoint.y << endl; |
|
cout << ">" << endl; |
|
} |
|
|
|
vector<int> queryIdxs( filteredMatches.size() ), trainIdxs( filteredMatches.size() ); |
|
for( size_t i = 0; i < filteredMatches.size(); i++ ) |
|
{ |
|
queryIdxs[i] = filteredMatches[i].queryIdx; |
|
trainIdxs[i] = filteredMatches[i].trainIdx; |
|
} |
|
|
|
if( !isWarpPerspective && ransacReprojThreshold >= 0 ) |
|
{ |
|
cout << "< Computing homography (RANSAC)..." << endl; |
|
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs); |
|
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs); |
|
H12 = findHomography( Mat(points1), Mat(points2), RANSAC, ransacReprojThreshold ); |
|
cout << ">" << endl; |
|
} |
|
|
|
Mat drawImg; |
|
if( !H12.empty() ) // filter outliers |
|
{ |
|
vector<char> matchesMask( filteredMatches.size(), 0 ); |
|
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs); |
|
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs); |
|
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12); |
|
|
|
double maxInlierDist = ransacReprojThreshold < 0 ? 3 : ransacReprojThreshold; |
|
for( size_t i1 = 0; i1 < points1.size(); i1++ ) |
|
{ |
|
if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) <= maxInlierDist ) // inlier |
|
matchesMask[i1] = 1; |
|
} |
|
// draw inliers |
|
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, Scalar(0, 255, 0), Scalar(0, 0, 255), matchesMask |
|
#if DRAW_RICH_KEYPOINTS_MODE |
|
, DrawMatchesFlags::DRAW_RICH_KEYPOINTS |
|
#endif |
|
); |
|
|
|
#if DRAW_OUTLIERS_MODE |
|
// draw outliers |
|
for( size_t i1 = 0; i1 < matchesMask.size(); i1++ ) |
|
matchesMask[i1] = !matchesMask[i1]; |
|
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg, Scalar(0, 0, 255), Scalar(255, 0, 0), matchesMask, |
|
DrawMatchesFlags::DRAW_OVER_OUTIMG | DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
#endif |
|
|
|
cout << "Number of inliers: " << countNonZero(matchesMask) << endl; |
|
} |
|
else |
|
drawMatches( img1, keypoints1, img2, keypoints2, filteredMatches, drawImg ); |
|
|
|
imshow( winName, drawImg ); |
|
} |
|
|
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if( argc != 7 && argc != 8 ) |
|
{ |
|
help(argv); |
|
return -1; |
|
} |
|
|
|
cv::initModule_nonfree(); |
|
|
|
bool isWarpPerspective = argc == 7; |
|
double ransacReprojThreshold = -1; |
|
if( !isWarpPerspective ) |
|
ransacReprojThreshold = atof(argv[7]); |
|
|
|
cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl; |
|
Ptr<FeatureDetector> detector = FeatureDetector::create( argv[1] ); |
|
Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create( argv[2] ); |
|
Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( argv[3] ); |
|
int mactherFilterType = getMatcherFilterType( argv[4] ); |
|
bool eval = !isWarpPerspective ? false : (atoi(argv[6]) == 0 ? false : true); |
|
cout << ">" << endl; |
|
if( detector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() ) |
|
{ |
|
cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl; |
|
return -1; |
|
} |
|
|
|
cout << "< Reading the images..." << endl; |
|
Mat img1 = imread( argv[5] ), img2; |
|
if( !isWarpPerspective ) |
|
img2 = imread( argv[6] ); |
|
cout << ">" << endl; |
|
if( img1.empty() || (!isWarpPerspective && img2.empty()) ) |
|
{ |
|
cout << "Can not read images" << endl; |
|
return -1; |
|
} |
|
|
|
cout << endl << "< Extracting keypoints from first image..." << endl; |
|
vector<KeyPoint> keypoints1; |
|
detector->detect( img1, keypoints1 ); |
|
cout << keypoints1.size() << " points" << endl << ">" << endl; |
|
|
|
cout << "< Computing descriptors for keypoints from first image..." << endl; |
|
Mat descriptors1; |
|
descriptorExtractor->compute( img1, keypoints1, descriptors1 ); |
|
cout << ">" << endl; |
|
|
|
namedWindow(winName, 1); |
|
RNG rng = theRNG(); |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, mactherFilterType, eval, |
|
ransacReprojThreshold, rng ); |
|
for(;;) |
|
{ |
|
char c = (char)waitKey(0); |
|
if( c == '\x1b' ) // esc |
|
{ |
|
cout << "Exiting ..." << endl; |
|
break; |
|
} |
|
else if( isWarpPerspective ) |
|
{ |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, mactherFilterType, eval, |
|
ransacReprojThreshold, rng ); |
|
} |
|
} |
|
return 0; |
|
}
|
|
|