mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
8.0 KiB
215 lines
8.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_GPUARITHM) |
|
|
|
Ptr<gpu::CornersDetector> cv::gpu::createGoodFeaturesToTrackDetector(int, int, double, double, int, bool, double) { throw_no_cuda(); return Ptr<gpu::CornersDetector>(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace cv { namespace gpu { namespace cudev |
|
{ |
|
namespace gfft |
|
{ |
|
int findCorners_gpu(PtrStepSzf eig, float threshold, PtrStepSzb mask, float2* corners, int max_count); |
|
void sortCorners_gpu(PtrStepSzf eig, float2* corners, int count); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
class GoodFeaturesToTrackDetector : public CornersDetector |
|
{ |
|
public: |
|
GoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, |
|
int blockSize, bool useHarrisDetector, double harrisK); |
|
|
|
void detect(InputArray image, OutputArray corners, InputArray mask = noArray()); |
|
|
|
private: |
|
int maxCorners_; |
|
double qualityLevel_; |
|
double minDistance_; |
|
|
|
Ptr<gpu::CornernessCriteria> cornerCriteria_; |
|
|
|
GpuMat Dx_; |
|
GpuMat Dy_; |
|
GpuMat buf_; |
|
GpuMat eig_; |
|
GpuMat minMaxbuf_; |
|
GpuMat tmpCorners_; |
|
}; |
|
|
|
GoodFeaturesToTrackDetector::GoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, |
|
int blockSize, bool useHarrisDetector, double harrisK) : |
|
maxCorners_(maxCorners), qualityLevel_(qualityLevel), minDistance_(minDistance) |
|
{ |
|
CV_Assert( qualityLevel_ > 0 && minDistance_ >= 0 && maxCorners_ >= 0 ); |
|
|
|
cornerCriteria_ = useHarrisDetector ? |
|
gpu::createHarrisCorner(srcType, blockSize, 3, harrisK) : |
|
gpu::createMinEigenValCorner(srcType, blockSize, 3); |
|
} |
|
|
|
void GoodFeaturesToTrackDetector::detect(InputArray _image, OutputArray _corners, InputArray _mask) |
|
{ |
|
using namespace cv::gpu::cudev::gfft; |
|
|
|
GpuMat image = _image.getGpuMat(); |
|
GpuMat mask = _mask.getGpuMat(); |
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) ); |
|
|
|
ensureSizeIsEnough(image.size(), CV_32FC1, eig_); |
|
cornerCriteria_->compute(image, eig_); |
|
|
|
double maxVal = 0; |
|
gpu::minMax(eig_, 0, &maxVal, noArray(), minMaxbuf_); |
|
|
|
ensureSizeIsEnough(1, std::max(1000, static_cast<int>(image.size().area() * 0.05)), CV_32FC2, tmpCorners_); |
|
|
|
int total = findCorners_gpu(eig_, static_cast<float>(maxVal * qualityLevel_), mask, tmpCorners_.ptr<float2>(), tmpCorners_.cols); |
|
|
|
if (total == 0) |
|
{ |
|
_corners.release(); |
|
return; |
|
} |
|
|
|
sortCorners_gpu(eig_, tmpCorners_.ptr<float2>(), total); |
|
|
|
if (minDistance_ < 1) |
|
{ |
|
tmpCorners_.colRange(0, maxCorners_ > 0 ? std::min(maxCorners_, total) : total).copyTo(_corners); |
|
} |
|
else |
|
{ |
|
std::vector<Point2f> tmp(total); |
|
Mat tmpMat(1, total, CV_32FC2, (void*)&tmp[0]); |
|
tmpCorners_.colRange(0, total).download(tmpMat); |
|
|
|
std::vector<Point2f> tmp2; |
|
tmp2.reserve(total); |
|
|
|
const int cell_size = cvRound(minDistance_); |
|
const int grid_width = (image.cols + cell_size - 1) / cell_size; |
|
const int grid_height = (image.rows + cell_size - 1) / cell_size; |
|
|
|
std::vector< std::vector<Point2f> > grid(grid_width * grid_height); |
|
|
|
for (int i = 0; i < total; ++i) |
|
{ |
|
Point2f p = tmp[i]; |
|
|
|
bool good = true; |
|
|
|
int x_cell = static_cast<int>(p.x / cell_size); |
|
int y_cell = static_cast<int>(p.y / cell_size); |
|
|
|
int x1 = x_cell - 1; |
|
int y1 = y_cell - 1; |
|
int x2 = x_cell + 1; |
|
int y2 = y_cell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(grid_width - 1, x2); |
|
y2 = std::min(grid_height - 1, y2); |
|
|
|
for (int yy = y1; yy <= y2; yy++) |
|
{ |
|
for (int xx = x1; xx <= x2; xx++) |
|
{ |
|
std::vector<Point2f>& m = grid[yy * grid_width + xx]; |
|
|
|
if (!m.empty()) |
|
{ |
|
for(size_t j = 0; j < m.size(); j++) |
|
{ |
|
float dx = p.x - m[j].x; |
|
float dy = p.y - m[j].y; |
|
|
|
if (dx * dx + dy * dy < minDistance_ * minDistance_) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if(good) |
|
{ |
|
grid[y_cell * grid_width + x_cell].push_back(p); |
|
|
|
tmp2.push_back(p); |
|
|
|
if (maxCorners_ > 0 && tmp2.size() == static_cast<size_t>(maxCorners_)) |
|
break; |
|
} |
|
} |
|
|
|
_corners.create(1, static_cast<int>(tmp2.size()), CV_32FC2); |
|
GpuMat corners = _corners.getGpuMat(); |
|
|
|
corners.upload(Mat(1, static_cast<int>(tmp2.size()), CV_32FC2, &tmp2[0])); |
|
} |
|
} |
|
} |
|
|
|
Ptr<gpu::CornersDetector> cv::gpu::createGoodFeaturesToTrackDetector(int srcType, int maxCorners, double qualityLevel, double minDistance, |
|
int blockSize, bool useHarrisDetector, double harrisK) |
|
{ |
|
return new GoodFeaturesToTrackDetector(srcType, maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, harrisK); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|