mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
312 lines
12 KiB
312 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other GpuMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or bpied warranties, including, but not limited to, the bpied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Merge |
|
|
|
struct CV_MergeTest : public cvtest::BaseTest |
|
{ |
|
void can_merge(size_t rows, size_t cols); |
|
void can_merge_submatrixes(size_t rows, size_t cols); |
|
void run(int); |
|
}; |
|
|
|
|
|
void CV_MergeTest::can_merge(size_t rows, size_t cols) |
|
{ |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
size_t depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
|
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
vector<Mat> src; |
|
for (size_t i = 0; i < num_channels; ++i) |
|
src.push_back(Mat(rows, cols, depth, Scalar::all(static_cast<double>(i)))); |
|
|
|
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels)); |
|
|
|
cv::merge(src, dst); |
|
|
|
vector<gpu::GpuMat> dev_src; |
|
for (size_t i = 0; i < num_channels; ++i) |
|
dev_src.push_back(gpu::GpuMat(src[i])); |
|
|
|
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels)); |
|
cv::gpu::merge(dev_src, dev_dst); |
|
|
|
Mat host_dst = dev_dst; |
|
|
|
double err = norm(dst, host_dst, NORM_INF); |
|
|
|
if (err > 1e-3) |
|
{ |
|
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err); |
|
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth); |
|
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows); |
|
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols); |
|
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
|
|
void CV_MergeTest::can_merge_submatrixes(size_t rows, size_t cols) |
|
{ |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
size_t depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
|
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
vector<Mat> src; |
|
for (size_t i = 0; i < num_channels; ++i) |
|
{ |
|
Mat m(rows * 2, cols * 2, depth, Scalar::all(static_cast<double>(i))); |
|
src.push_back(m(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols))); |
|
} |
|
|
|
Mat dst(rows, cols, CV_MAKETYPE(depth, num_channels)); |
|
|
|
cv::merge(src, dst); |
|
|
|
vector<gpu::GpuMat> dev_src; |
|
for (size_t i = 0; i < num_channels; ++i) |
|
dev_src.push_back(gpu::GpuMat(src[i])); |
|
|
|
gpu::GpuMat dev_dst(rows, cols, CV_MAKETYPE(depth, num_channels)); |
|
cv::gpu::merge(dev_src, dev_dst); |
|
|
|
Mat host_dst = dev_dst; |
|
|
|
double err = norm(dst, host_dst, NORM_INF); |
|
|
|
if (err > 1e-3) |
|
{ |
|
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err); |
|
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth); |
|
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows); |
|
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols); |
|
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
void CV_MergeTest::run(int) |
|
{ |
|
can_merge(1, 1); |
|
can_merge(1, 7); |
|
can_merge(53, 7); |
|
can_merge_submatrixes(1, 1); |
|
can_merge_submatrixes(1, 7); |
|
can_merge_submatrixes(53, 7); |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Split |
|
|
|
struct CV_SplitTest : public cvtest::BaseTest |
|
{ |
|
void can_split(size_t rows, size_t cols); |
|
void can_split_submatrix(size_t rows, size_t cols); |
|
void run(int); |
|
}; |
|
|
|
void CV_SplitTest::can_split(size_t rows, size_t cols) |
|
{ |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
size_t depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
|
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
Mat src(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0)); |
|
vector<Mat> dst; |
|
cv::split(src, dst); |
|
|
|
gpu::GpuMat dev_src(src); |
|
vector<gpu::GpuMat> dev_dst; |
|
cv::gpu::split(dev_src, dev_dst); |
|
|
|
if (dev_dst.size() != dst.size()) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "Bad output sizes"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
for (size_t i = 0; i < num_channels; ++i) |
|
{ |
|
Mat host_dst = dev_dst[i]; |
|
double err = norm(dst[i], host_dst, NORM_INF); |
|
|
|
if (err > 1e-3) |
|
{ |
|
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err); |
|
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth); |
|
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows); |
|
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols); |
|
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_SplitTest::can_split_submatrix(size_t rows, size_t cols) |
|
{ |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
size_t depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
|
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
Mat src_data(rows * 2, cols * 2, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0)); |
|
Mat src(src_data(Range(rows / 2, rows / 2 + rows), Range(cols / 2, cols / 2 + cols))); |
|
vector<Mat> dst; |
|
cv::split(src, dst); |
|
|
|
gpu::GpuMat dev_src(src); |
|
vector<gpu::GpuMat> dev_dst; |
|
cv::gpu::split(dev_src, dev_dst); |
|
|
|
if (dev_dst.size() != dst.size()) |
|
{ |
|
ts->printf(cvtest::TS::CONSOLE, "Bad output sizes"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
} |
|
|
|
for (size_t i = 0; i < num_channels; ++i) |
|
{ |
|
Mat host_dst = dev_dst[i]; |
|
double err = norm(dst[i], host_dst, NORM_INF); |
|
|
|
if (err > 1e-3) |
|
{ |
|
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err); |
|
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth); |
|
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows); |
|
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols); |
|
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CV_SplitTest::run(int) |
|
{ |
|
can_split(1, 1); |
|
can_split(1, 7); |
|
can_split(7, 53); |
|
can_split_submatrix(1, 1); |
|
can_split_submatrix(1, 7); |
|
can_split_submatrix(7, 53); |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Split and merge |
|
|
|
struct CV_SplitMergeTest : public cvtest::BaseTest |
|
{ |
|
void can_split_merge(size_t rows, size_t cols); |
|
void run(int); |
|
}; |
|
|
|
void CV_SplitMergeTest::can_split_merge(size_t rows, size_t cols) { |
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) && |
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE); |
|
size_t depth_end = double_ok ? CV_64F : CV_32F; |
|
|
|
for (size_t num_channels = 1; num_channels <= 4; ++num_channels) |
|
for (size_t depth = CV_8U; depth <= depth_end; ++depth) |
|
{ |
|
Mat orig(rows, cols, CV_MAKETYPE(depth, num_channels), Scalar(1.0, 2.0, 3.0, 4.0)); |
|
gpu::GpuMat dev_orig(orig); |
|
vector<gpu::GpuMat> dev_vec; |
|
cv::gpu::split(dev_orig, dev_vec); |
|
|
|
gpu::GpuMat dev_final(rows, cols, CV_MAKETYPE(depth, num_channels)); |
|
cv::gpu::merge(dev_vec, dev_final); |
|
|
|
double err = cv::norm((Mat)dev_orig, (Mat)dev_final, NORM_INF); |
|
if (err > 1e-3) |
|
{ |
|
//ts->printf(cvtest::TS::CONSOLE, "\nNorm: %f\n", err); |
|
//ts->printf(cvtest::TS::CONSOLE, "Depth: %d\n", depth); |
|
//ts->printf(cvtest::TS::CONSOLE, "Rows: %d\n", rows); |
|
//ts->printf(cvtest::TS::CONSOLE, "Cols: %d\n", cols); |
|
//ts->printf(cvtest::TS::CONSOLE, "NumChannels: %d\n", num_channels); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
|
|
void CV_SplitMergeTest::run(int) |
|
{ |
|
can_split_merge(1, 1); |
|
can_split_merge(1, 7); |
|
can_split_merge(7, 53); |
|
} |
|
|
|
|
|
TEST(merge, accuracy) { CV_MergeTest test; test.safe_run(); } |
|
TEST(split, accuracy) { CV_SplitTest test; test.safe_run(); } |
|
TEST(split, merge_consistency) { CV_SplitMergeTest test; test.safe_run(); }
|
|
|