Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

169 lines
6.1 KiB

#include <iostream>
#include <fstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/dnn/dnn.hpp>
using namespace cv;
using namespace cv::dnn;
std::string keys =
"{ help h | | Print help message. }"
"{ inputImage i | | Path to an input image. Skip this argument to capture frames from a camera. }"
"{ detModelPath dmp | | Path to a binary .onnx model for detection. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
"{ recModelPath rmp | | Path to a binary .onnx model for recognition. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
"{ inputHeight ih |736| image height of the model input. It should be multiple by 32.}"
"{ inputWidth iw |736| image width of the model input. It should be multiple by 32.}"
"{ RGBInput rgb |0| 0: imread with flags=IMREAD_GRAYSCALE; 1: imread with flags=IMREAD_COLOR. }"
"{ binaryThreshold bt |0.3| Confidence threshold of the binary map. }"
"{ polygonThreshold pt |0.5| Confidence threshold of polygons. }"
"{ maxCandidate max |200| Max candidates of polygons. }"
"{ unclipRatio ratio |2.0| unclip ratio. }"
"{ vocabularyPath vp | alphabet_36.txt | Path to benchmarks for evaluation. "
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}";
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result);
bool sortPts(const Point& p1, const Point& p2);
int main(int argc, char** argv)
{
// Parse arguments
CommandLineParser parser(argc, argv, keys);
parser.about("Use this script to run an end-to-end inference sample of textDetectionModel and textRecognitionModel APIs\n"
"Use -h for more information");
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
float binThresh = parser.get<float>("binaryThreshold");
float polyThresh = parser.get<float>("polygonThreshold");
uint maxCandidates = parser.get<uint>("maxCandidate");
String detModelPath = parser.get<String>("detModelPath");
String recModelPath = parser.get<String>("recModelPath");
String vocPath = parser.get<String>("vocabularyPath");
double unclipRatio = parser.get<double>("unclipRatio");
int height = parser.get<int>("inputHeight");
int width = parser.get<int>("inputWidth");
int imreadRGB = parser.get<int>("RGBInput");
if (!parser.check())
{
parser.printErrors();
return 1;
}
// Load networks
CV_Assert(!detModelPath.empty());
TextDetectionModel_DB detector(detModelPath);
detector.setBinaryThreshold(binThresh)
.setPolygonThreshold(polyThresh)
.setUnclipRatio(unclipRatio)
.setMaxCandidates(maxCandidates);
CV_Assert(!recModelPath.empty());
TextRecognitionModel recognizer(recModelPath);
// Load vocabulary
CV_Assert(!vocPath.empty());
std::ifstream vocFile;
vocFile.open(samples::findFile(vocPath));
CV_Assert(vocFile.is_open());
String vocLine;
std::vector<String> vocabulary;
while (std::getline(vocFile, vocLine)) {
vocabulary.push_back(vocLine);
}
recognizer.setVocabulary(vocabulary);
recognizer.setDecodeType("CTC-greedy");
// Parameters for Detection
double detScale = 1.0 / 255.0;
Size detInputSize = Size(width, height);
Scalar detMean = Scalar(122.67891434, 116.66876762, 104.00698793);
detector.setInputParams(detScale, detInputSize, detMean);
// Parameters for Recognition
double recScale = 1.0 / 127.5;
Scalar recMean = Scalar(127.5);
Size recInputSize = Size(100, 32);
recognizer.setInputParams(recScale, recInputSize, recMean);
// Create a window
static const std::string winName = "Text_Spotting";
// Input data
Mat frame = imread(samples::findFile(parser.get<String>("inputImage")));
std::cout << frame.size << std::endl;
// Inference
std::vector< std::vector<Point> > detResults;
detector.detect(frame, detResults);
if (detResults.size() > 0) {
// Text Recognition
Mat recInput;
if (!imreadRGB) {
cvtColor(frame, recInput, cv::COLOR_BGR2GRAY);
} else {
recInput = frame;
}
std::vector< std::vector<Point> > contours;
for (uint i = 0; i < detResults.size(); i++)
{
const auto& quadrangle = detResults[i];
CV_CheckEQ(quadrangle.size(), (size_t)4, "");
contours.emplace_back(quadrangle);
std::vector<Point2f> quadrangle_2f;
for (int j = 0; j < 4; j++)
quadrangle_2f.emplace_back(quadrangle[j]);
// Transform and Crop
Mat cropped;
fourPointsTransform(recInput, &quadrangle_2f[0], cropped);
std::string recognitionResult = recognizer.recognize(cropped);
std::cout << i << ": '" << recognitionResult << "'" << std::endl;
putText(frame, recognitionResult, quadrangle[3], FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
}
polylines(frame, contours, true, Scalar(0, 255, 0), 2);
} else {
std::cout << "No Text Detected." << std::endl;
}
imshow(winName, frame);
waitKey();
return 0;
}
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result)
{
const Size outputSize = Size(100, 32);
Point2f targetVertices[4] = {
Point(0, outputSize.height - 1),
Point(0, 0),
Point(outputSize.width - 1, 0),
Point(outputSize.width - 1, outputSize.height - 1)
};
Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices);
warpPerspective(frame, result, rotationMatrix, outputSize);
#if 0
imshow("roi", result);
waitKey();
#endif
}
bool sortPts(const Point& p1, const Point& p2)
{
return p1.x < p2.x;
}