Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1114 lines
36 KiB
1114 lines
36 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution. |
|
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow. |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_superres.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::superres; |
|
using namespace cv::superres::detail; |
|
|
|
namespace |
|
{ |
|
#ifdef HAVE_OPENCL |
|
|
|
bool ocl_calcRelativeMotions(InputArrayOfArrays _forwardMotions, InputArrayOfArrays _backwardMotions, |
|
OutputArrayOfArrays _relForwardMotions, OutputArrayOfArrays _relBackwardMotions, |
|
int baseIdx, const Size & size) |
|
{ |
|
std::vector<UMat> & forwardMotions = *(std::vector<UMat> *)_forwardMotions.getObj(), |
|
& backwardMotions = *(std::vector<UMat> *)_backwardMotions.getObj(), |
|
& relForwardMotions = *(std::vector<UMat> *)_relForwardMotions.getObj(), |
|
& relBackwardMotions = *(std::vector<UMat> *)_relBackwardMotions.getObj(); |
|
|
|
const int count = static_cast<int>(forwardMotions.size()); |
|
|
|
relForwardMotions.resize(count); |
|
relForwardMotions[baseIdx].create(size, CV_32FC2); |
|
relForwardMotions[baseIdx].setTo(Scalar::all(0)); |
|
|
|
relBackwardMotions.resize(count); |
|
relBackwardMotions[baseIdx].create(size, CV_32FC2); |
|
relBackwardMotions[baseIdx].setTo(Scalar::all(0)); |
|
|
|
for (int i = baseIdx - 1; i >= 0; --i) |
|
{ |
|
add(relForwardMotions[i + 1], forwardMotions[i], relForwardMotions[i]); |
|
add(relBackwardMotions[i + 1], backwardMotions[i + 1], relBackwardMotions[i]); |
|
} |
|
|
|
for (int i = baseIdx + 1; i < count; ++i) |
|
{ |
|
add(relForwardMotions[i - 1], backwardMotions[i], relForwardMotions[i]); |
|
add(relBackwardMotions[i - 1], forwardMotions[i - 1], relBackwardMotions[i]); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void calcRelativeMotions(InputArrayOfArrays _forwardMotions, InputArrayOfArrays _backwardMotions, |
|
OutputArrayOfArrays _relForwardMotions, OutputArrayOfArrays _relBackwardMotions, |
|
int baseIdx, const Size & size) |
|
{ |
|
CV_OCL_RUN(_forwardMotions.isUMatVector() && _backwardMotions.isUMatVector() && |
|
_relForwardMotions.isUMatVector() && _relBackwardMotions.isUMatVector(), |
|
ocl_calcRelativeMotions(_forwardMotions, _backwardMotions, _relForwardMotions, |
|
_relBackwardMotions, baseIdx, size)) |
|
|
|
std::vector<Mat> & forwardMotions = *(std::vector<Mat> *)_forwardMotions.getObj(), |
|
& backwardMotions = *(std::vector<Mat> *)_backwardMotions.getObj(), |
|
& relForwardMotions = *(std::vector<Mat> *)_relForwardMotions.getObj(), |
|
& relBackwardMotions = *(std::vector<Mat> *)_relBackwardMotions.getObj(); |
|
|
|
const int count = static_cast<int>(forwardMotions.size()); |
|
|
|
relForwardMotions.resize(count); |
|
relForwardMotions[baseIdx].create(size, CV_32FC2); |
|
relForwardMotions[baseIdx].setTo(Scalar::all(0)); |
|
|
|
relBackwardMotions.resize(count); |
|
relBackwardMotions[baseIdx].create(size, CV_32FC2); |
|
relBackwardMotions[baseIdx].setTo(Scalar::all(0)); |
|
|
|
for (int i = baseIdx - 1; i >= 0; --i) |
|
{ |
|
add(relForwardMotions[i + 1], forwardMotions[i], relForwardMotions[i]); |
|
add(relBackwardMotions[i + 1], backwardMotions[i + 1], relBackwardMotions[i]); |
|
} |
|
|
|
for (int i = baseIdx + 1; i < count; ++i) |
|
{ |
|
add(relForwardMotions[i - 1], backwardMotions[i], relForwardMotions[i]); |
|
add(relBackwardMotions[i - 1], forwardMotions[i - 1], relBackwardMotions[i]); |
|
} |
|
} |
|
#ifdef HAVE_OPENCL |
|
|
|
bool ocl_upscaleMotions(InputArrayOfArrays _lowResMotions, OutputArrayOfArrays _highResMotions, int scale) |
|
{ |
|
std::vector<UMat> & lowResMotions = *(std::vector<UMat> *)_lowResMotions.getObj(), |
|
& highResMotions = *(std::vector<UMat> *)_highResMotions.getObj(); |
|
|
|
highResMotions.resize(lowResMotions.size()); |
|
|
|
for (size_t i = 0; i < lowResMotions.size(); ++i) |
|
{ |
|
resize(lowResMotions[i], highResMotions[i], Size(), scale, scale, INTER_LINEAR); // TODO |
|
multiply(highResMotions[i], Scalar::all(scale), highResMotions[i]); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void upscaleMotions(InputArrayOfArrays _lowResMotions, OutputArrayOfArrays _highResMotions, int scale) |
|
{ |
|
CV_OCL_RUN(_lowResMotions.isUMatVector() && _highResMotions.isUMatVector(), |
|
ocl_upscaleMotions(_lowResMotions, _highResMotions, scale)) |
|
|
|
std::vector<Mat> & lowResMotions = *(std::vector<Mat> *)_lowResMotions.getObj(), |
|
& highResMotions = *(std::vector<Mat> *)_highResMotions.getObj(); |
|
|
|
highResMotions.resize(lowResMotions.size()); |
|
|
|
for (size_t i = 0; i < lowResMotions.size(); ++i) |
|
{ |
|
resize(lowResMotions[i], highResMotions[i], Size(), scale, scale, INTER_CUBIC); |
|
multiply(highResMotions[i], Scalar::all(scale), highResMotions[i]); |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool ocl_buildMotionMaps(InputArray _forwardMotion, InputArray _backwardMotion, |
|
OutputArray _forwardMap, OutputArray _backwardMap) |
|
{ |
|
ocl::Kernel k("buildMotionMaps", ocl::superres::superres_btvl1_oclsrc); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat forwardMotion = _forwardMotion.getUMat(), backwardMotion = _backwardMotion.getUMat(); |
|
Size size = forwardMotion.size(); |
|
|
|
_forwardMap.create(size, CV_32FC2); |
|
_backwardMap.create(size, CV_32FC2); |
|
|
|
UMat forwardMap = _forwardMap.getUMat(), backwardMap = _backwardMap.getUMat(); |
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(forwardMotion), |
|
ocl::KernelArg::ReadOnlyNoSize(backwardMotion), |
|
ocl::KernelArg::WriteOnlyNoSize(forwardMap), |
|
ocl::KernelArg::WriteOnly(backwardMap)); |
|
|
|
size_t globalsize[2] = { (size_t)size.width, (size_t)size.height }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
void buildMotionMaps(InputArray _forwardMotion, InputArray _backwardMotion, |
|
OutputArray _forwardMap, OutputArray _backwardMap) |
|
{ |
|
CV_OCL_RUN(_forwardMap.isUMat() && _backwardMap.isUMat(), |
|
ocl_buildMotionMaps(_forwardMotion, _backwardMotion, _forwardMap, |
|
_backwardMap)); |
|
|
|
Mat forwardMotion = _forwardMotion.getMat(), backwardMotion = _backwardMotion.getMat(); |
|
|
|
_forwardMap.create(forwardMotion.size(), CV_32FC2); |
|
_backwardMap.create(forwardMotion.size(), CV_32FC2); |
|
|
|
Mat forwardMap = _forwardMap.getMat(), backwardMap = _backwardMap.getMat(); |
|
|
|
for (int y = 0; y < forwardMotion.rows; ++y) |
|
{ |
|
const Point2f* forwardMotionRow = forwardMotion.ptr<Point2f>(y); |
|
const Point2f* backwardMotionRow = backwardMotion.ptr<Point2f>(y); |
|
Point2f* forwardMapRow = forwardMap.ptr<Point2f>(y); |
|
Point2f* backwardMapRow = backwardMap.ptr<Point2f>(y); |
|
|
|
for (int x = 0; x < forwardMotion.cols; ++x) |
|
{ |
|
Point2f base(static_cast<float>(x), static_cast<float>(y)); |
|
|
|
forwardMapRow[x] = base + backwardMotionRow[x]; |
|
backwardMapRow[x] = base + forwardMotionRow[x]; |
|
} |
|
} |
|
} |
|
|
|
template <typename T> |
|
void upscaleImpl(InputArray _src, OutputArray _dst, int scale) |
|
{ |
|
Mat src = _src.getMat(); |
|
_dst.create(src.rows * scale, src.cols * scale, src.type()); |
|
_dst.setTo(Scalar::all(0)); |
|
Mat dst = _dst.getMat(); |
|
|
|
for (int y = 0, Y = 0; y < src.rows; ++y, Y += scale) |
|
{ |
|
const T * const srcRow = src.ptr<T>(y); |
|
T * const dstRow = dst.ptr<T>(Y); |
|
|
|
for (int x = 0, X = 0; x < src.cols; ++x, X += scale) |
|
dstRow[X] = srcRow[x]; |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_upscale(InputArray _src, OutputArray _dst, int scale) |
|
{ |
|
int type = _src.type(), cn = CV_MAT_CN(type); |
|
ocl::Kernel k("upscale", ocl::superres::superres_btvl1_oclsrc, |
|
format("-D cn=%d", cn)); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(src.rows * scale, src.cols * scale, type); |
|
_dst.setTo(Scalar::all(0)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
k.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::ReadWriteNoSize(dst), scale); |
|
|
|
size_t globalsize[2] = { (size_t)src.cols, (size_t)src.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
typedef struct _Point4f { float ar[4]; } Point4f; |
|
|
|
void upscale(InputArray _src, OutputArray _dst, int scale) |
|
{ |
|
int cn = _src.channels(); |
|
CV_Assert( cn == 1 || cn == 3 || cn == 4 ); |
|
|
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_upscale(_src, _dst, scale)) |
|
|
|
typedef void (*func_t)(InputArray src, OutputArray dst, int scale); |
|
static const func_t funcs[] = |
|
{ |
|
0, upscaleImpl<float>, 0, upscaleImpl<Point3f>, upscaleImpl<Point4f> |
|
}; |
|
|
|
const func_t func = funcs[cn]; |
|
CV_Assert(func != 0); |
|
func(_src, _dst, scale); |
|
} |
|
|
|
inline float diffSign(float a, float b) |
|
{ |
|
return a > b ? 1.0f : a < b ? -1.0f : 0.0f; |
|
} |
|
|
|
Point3f diffSign(Point3f a, Point3f b) |
|
{ |
|
return Point3f( |
|
a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f, |
|
a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f, |
|
a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f |
|
); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_diffSign(InputArray _src1, OutputArray _src2, OutputArray _dst) |
|
{ |
|
ocl::Kernel k("diffSign", ocl::superres::superres_btvl1_oclsrc); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(); |
|
_dst.create(src1.size(), src1.type()); |
|
UMat dst = _dst.getUMat(); |
|
|
|
int cn = src1.channels(); |
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src1), |
|
ocl::KernelArg::ReadOnlyNoSize(src2), |
|
ocl::KernelArg::WriteOnly(dst, cn)); |
|
|
|
size_t globalsize[2] = { (size_t)src1.cols * cn, (size_t)src1.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
void diffSign(InputArray _src1, OutputArray _src2, OutputArray _dst) |
|
{ |
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_diffSign(_src1, _src2, _dst)) |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(); |
|
_dst.create(src1.size(), src1.type()); |
|
Mat dst = _dst.getMat(); |
|
|
|
const int count = src1.cols * src1.channels(); |
|
|
|
for (int y = 0; y < src1.rows; ++y) |
|
{ |
|
const float * const src1Ptr = src1.ptr<float>(y); |
|
const float * const src2Ptr = src2.ptr<float>(y); |
|
float* dstPtr = dst.ptr<float>(y); |
|
|
|
for (int x = 0; x < count; ++x) |
|
dstPtr[x] = diffSign(src1Ptr[x], src2Ptr[x]); |
|
} |
|
} |
|
|
|
void calcBtvWeights(int btvKernelSize, double alpha, std::vector<float>& btvWeights) |
|
{ |
|
const size_t size = btvKernelSize * btvKernelSize; |
|
|
|
btvWeights.resize(size); |
|
|
|
const int ksize = (btvKernelSize - 1) / 2; |
|
const float alpha_f = static_cast<float>(alpha); |
|
|
|
for (int m = 0, ind = 0; m <= ksize; ++m) |
|
{ |
|
for (int l = ksize; l + m >= 0; --l, ++ind) |
|
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l)); |
|
} |
|
} |
|
|
|
template <typename T> |
|
struct BtvRegularizationBody : ParallelLoopBody |
|
{ |
|
void operator ()(const Range& range) const; |
|
|
|
Mat src; |
|
mutable Mat dst; |
|
int ksize; |
|
const float* btvWeights; |
|
}; |
|
|
|
template <typename T> |
|
void BtvRegularizationBody<T>::operator ()(const Range& range) const |
|
{ |
|
for (int i = range.start; i < range.end; ++i) |
|
{ |
|
const T * const srcRow = src.ptr<T>(i); |
|
T * const dstRow = dst.ptr<T>(i); |
|
|
|
for(int j = ksize; j < src.cols - ksize; ++j) |
|
{ |
|
const T srcVal = srcRow[j]; |
|
|
|
for (int m = 0, ind = 0; m <= ksize; ++m) |
|
{ |
|
const T* srcRow2 = src.ptr<T>(i - m); |
|
const T* srcRow3 = src.ptr<T>(i + m); |
|
|
|
for (int l = ksize; l + m >= 0; --l, ++ind) |
|
dstRow[j] += btvWeights[ind] * (diffSign(srcVal, srcRow3[j + l]) |
|
- diffSign(srcRow2[j - l], srcVal)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
template <typename T> |
|
void calcBtvRegularizationImpl(InputArray _src, OutputArray _dst, int btvKernelSize, const std::vector<float>& btvWeights) |
|
{ |
|
Mat src = _src.getMat(); |
|
_dst.create(src.size(), src.type()); |
|
_dst.setTo(Scalar::all(0)); |
|
Mat dst = _dst.getMat(); |
|
|
|
const int ksize = (btvKernelSize - 1) / 2; |
|
|
|
BtvRegularizationBody<T> body; |
|
|
|
body.src = src; |
|
body.dst = dst; |
|
body.ksize = ksize; |
|
body.btvWeights = &btvWeights[0]; |
|
|
|
parallel_for_(Range(ksize, src.rows - ksize), body); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_calcBtvRegularization(InputArray _src, OutputArray _dst, int btvKernelSize, const UMat & ubtvWeights) |
|
{ |
|
int cn = _src.channels(); |
|
ocl::Kernel k("calcBtvRegularization", ocl::superres::superres_btvl1_oclsrc, |
|
format("-D cn=%d", cn)); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(src.size(), src.type()); |
|
_dst.setTo(Scalar::all(0)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
const int ksize = (btvKernelSize - 1) / 2; |
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst), |
|
ksize, ocl::KernelArg::PtrReadOnly(ubtvWeights)); |
|
|
|
size_t globalsize[2] = { (size_t)src.cols, (size_t)src.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
void calcBtvRegularization(InputArray _src, OutputArray _dst, int btvKernelSize, |
|
const std::vector<float>& btvWeights, const UMat & ubtvWeights) |
|
{ |
|
CV_OCL_RUN(_dst.isUMat(), |
|
ocl_calcBtvRegularization(_src, _dst, btvKernelSize, ubtvWeights)) |
|
(void)ubtvWeights; |
|
|
|
typedef void (*func_t)(InputArray _src, OutputArray _dst, int btvKernelSize, const std::vector<float>& btvWeights); |
|
static const func_t funcs[] = |
|
{ |
|
0, calcBtvRegularizationImpl<float>, 0, calcBtvRegularizationImpl<Point3f>, 0 |
|
}; |
|
|
|
const func_t func = funcs[_src.channels()]; |
|
CV_Assert(func != 0); |
|
func(_src, _dst, btvKernelSize, btvWeights); |
|
} |
|
|
|
class BTVL1_Base : public cv::superres::SuperResolution |
|
{ |
|
public: |
|
BTVL1_Base(); |
|
|
|
void process(InputArrayOfArrays src, OutputArray dst, InputArrayOfArrays forwardMotions, |
|
InputArrayOfArrays backwardMotions, int baseIdx); |
|
|
|
void collectGarbage(); |
|
|
|
CV_IMPL_PROPERTY(int, Scale, scale_) |
|
CV_IMPL_PROPERTY(int, Iterations, iterations_) |
|
CV_IMPL_PROPERTY(double, Tau, tau_) |
|
CV_IMPL_PROPERTY(double, Labmda, lambda_) |
|
CV_IMPL_PROPERTY(double, Alpha, alpha_) |
|
CV_IMPL_PROPERTY(int, KernelSize, btvKernelSize_) |
|
CV_IMPL_PROPERTY(int, BlurKernelSize, blurKernelSize_) |
|
CV_IMPL_PROPERTY(double, BlurSigma, blurSigma_) |
|
CV_IMPL_PROPERTY(int, TemporalAreaRadius, temporalAreaRadius_) |
|
CV_IMPL_PROPERTY_S(Ptr<cv::superres::DenseOpticalFlowExt>, OpticalFlow, opticalFlow_) |
|
|
|
protected: |
|
int scale_; |
|
int iterations_; |
|
double tau_; |
|
double lambda_; |
|
double alpha_; |
|
int btvKernelSize_; |
|
int blurKernelSize_; |
|
double blurSigma_; |
|
int temporalAreaRadius_; // not used in some implementations |
|
Ptr<cv::superres::DenseOpticalFlowExt> opticalFlow_; |
|
|
|
private: |
|
bool ocl_process(InputArrayOfArrays src, OutputArray dst, InputArrayOfArrays forwardMotions, |
|
InputArrayOfArrays backwardMotions, int baseIdx); |
|
|
|
//Ptr<FilterEngine> filter_; |
|
int curBlurKernelSize_; |
|
double curBlurSigma_; |
|
int curSrcType_; |
|
|
|
std::vector<float> btvWeights_; |
|
UMat ubtvWeights_; |
|
|
|
int curBtvKernelSize_; |
|
double curAlpha_; |
|
|
|
// Mat |
|
std::vector<Mat> lowResForwardMotions_; |
|
std::vector<Mat> lowResBackwardMotions_; |
|
|
|
std::vector<Mat> highResForwardMotions_; |
|
std::vector<Mat> highResBackwardMotions_; |
|
|
|
std::vector<Mat> forwardMaps_; |
|
std::vector<Mat> backwardMaps_; |
|
|
|
Mat highRes_; |
|
|
|
Mat diffTerm_, regTerm_; |
|
Mat a_, b_, c_; |
|
|
|
#ifdef HAVE_OPENCL |
|
// UMat |
|
std::vector<UMat> ulowResForwardMotions_; |
|
std::vector<UMat> ulowResBackwardMotions_; |
|
|
|
std::vector<UMat> uhighResForwardMotions_; |
|
std::vector<UMat> uhighResBackwardMotions_; |
|
|
|
std::vector<UMat> uforwardMaps_; |
|
std::vector<UMat> ubackwardMaps_; |
|
|
|
UMat uhighRes_; |
|
|
|
UMat udiffTerm_, uregTerm_; |
|
UMat ua_, ub_, uc_; |
|
#endif |
|
}; |
|
|
|
BTVL1_Base::BTVL1_Base() |
|
{ |
|
scale_ = 4; |
|
iterations_ = 180; |
|
lambda_ = 0.03; |
|
tau_ = 1.3; |
|
alpha_ = 0.7; |
|
btvKernelSize_ = 7; |
|
blurKernelSize_ = 5; |
|
blurSigma_ = 0.0; |
|
temporalAreaRadius_ = 0; |
|
opticalFlow_ = createOptFlow_Farneback(); |
|
|
|
curBlurKernelSize_ = -1; |
|
curBlurSigma_ = -1.0; |
|
curSrcType_ = -1; |
|
|
|
curBtvKernelSize_ = -1; |
|
curAlpha_ = -1.0; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool BTVL1_Base::ocl_process(InputArrayOfArrays _src, OutputArray _dst, InputArrayOfArrays _forwardMotions, |
|
InputArrayOfArrays _backwardMotions, int baseIdx) |
|
{ |
|
std::vector<UMat> & src = *(std::vector<UMat> *)_src.getObj(), |
|
& forwardMotions = *(std::vector<UMat> *)_forwardMotions.getObj(), |
|
& backwardMotions = *(std::vector<UMat> *)_backwardMotions.getObj(); |
|
|
|
// update blur filter and btv weights |
|
if (blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_) |
|
{ |
|
//filter_ = createGaussianFilter(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
curBlurKernelSize_ = blurKernelSize_; |
|
curBlurSigma_ = blurSigma_; |
|
curSrcType_ = src[0].type(); |
|
} |
|
|
|
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_) |
|
{ |
|
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_); |
|
Mat(btvWeights_, true).copyTo(ubtvWeights_); |
|
|
|
curBtvKernelSize_ = btvKernelSize_; |
|
curAlpha_ = alpha_; |
|
} |
|
|
|
// calc high res motions |
|
calcRelativeMotions(forwardMotions, backwardMotions, ulowResForwardMotions_, ulowResBackwardMotions_, baseIdx, src[0].size()); |
|
|
|
upscaleMotions(ulowResForwardMotions_, uhighResForwardMotions_, scale_); |
|
upscaleMotions(ulowResBackwardMotions_, uhighResBackwardMotions_, scale_); |
|
|
|
uforwardMaps_.resize(uhighResForwardMotions_.size()); |
|
ubackwardMaps_.resize(uhighResForwardMotions_.size()); |
|
for (size_t i = 0; i < uhighResForwardMotions_.size(); ++i) |
|
buildMotionMaps(uhighResForwardMotions_[i], uhighResBackwardMotions_[i], uforwardMaps_[i], ubackwardMaps_[i]); |
|
|
|
// initial estimation |
|
const Size lowResSize = src[0].size(); |
|
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_); |
|
|
|
resize(src[baseIdx], uhighRes_, highResSize, 0, 0, INTER_LINEAR); // TODO |
|
|
|
// iterations |
|
udiffTerm_.create(highResSize, uhighRes_.type()); |
|
ua_.create(highResSize, uhighRes_.type()); |
|
ub_.create(highResSize, uhighRes_.type()); |
|
uc_.create(lowResSize, uhighRes_.type()); |
|
|
|
for (int i = 0; i < iterations_; ++i) |
|
{ |
|
udiffTerm_.setTo(Scalar::all(0)); |
|
|
|
for (size_t k = 0; k < src.size(); ++k) |
|
{ |
|
// a = M * Ih |
|
remap(uhighRes_, ua_, ubackwardMaps_[k], noArray(), INTER_NEAREST); |
|
// b = HM * Ih |
|
GaussianBlur(ua_, ub_, Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
// c = DHM * Ih |
|
resize(ub_, uc_, lowResSize, 0, 0, INTER_NEAREST); |
|
|
|
diffSign(src[k], uc_, uc_); |
|
|
|
// a = Dt * diff |
|
upscale(uc_, ua_, scale_); |
|
|
|
// b = HtDt * diff |
|
GaussianBlur(ua_, ub_, Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
// a = MtHtDt * diff |
|
remap(ub_, ua_, uforwardMaps_[k], noArray(), INTER_NEAREST); |
|
|
|
add(udiffTerm_, ua_, udiffTerm_); |
|
} |
|
|
|
if (lambda_ > 0) |
|
{ |
|
calcBtvRegularization(uhighRes_, uregTerm_, btvKernelSize_, btvWeights_, ubtvWeights_); |
|
addWeighted(udiffTerm_, 1.0, uregTerm_, -lambda_, 0.0, udiffTerm_); |
|
} |
|
|
|
addWeighted(uhighRes_, 1.0, udiffTerm_, tau_, 0.0, uhighRes_); |
|
} |
|
|
|
Rect inner(btvKernelSize_, btvKernelSize_, uhighRes_.cols - 2 * btvKernelSize_, uhighRes_.rows - 2 * btvKernelSize_); |
|
uhighRes_(inner).copyTo(_dst); |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void BTVL1_Base::process(InputArrayOfArrays _src, OutputArray _dst, InputArrayOfArrays _forwardMotions, |
|
InputArrayOfArrays _backwardMotions, int baseIdx) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert( scale_ > 1 ); |
|
CV_Assert( iterations_ > 0 ); |
|
CV_Assert( tau_ > 0.0 ); |
|
CV_Assert( alpha_ > 0.0 ); |
|
CV_Assert( btvKernelSize_ > 0 ); |
|
CV_Assert( blurKernelSize_ > 0 ); |
|
CV_Assert( blurSigma_ >= 0.0 ); |
|
|
|
CV_OCL_RUN(_src.isUMatVector() && _dst.isUMat() && _forwardMotions.isUMatVector() && |
|
_backwardMotions.isUMatVector(), |
|
ocl_process(_src, _dst, _forwardMotions, _backwardMotions, baseIdx)) |
|
|
|
std::vector<Mat> & src = *(std::vector<Mat> *)_src.getObj(), |
|
& forwardMotions = *(std::vector<Mat> *)_forwardMotions.getObj(), |
|
& backwardMotions = *(std::vector<Mat> *)_backwardMotions.getObj(); |
|
|
|
// update blur filter and btv weights |
|
if (blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_) |
|
{ |
|
//filter_ = createGaussianFilter(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
curBlurKernelSize_ = blurKernelSize_; |
|
curBlurSigma_ = blurSigma_; |
|
curSrcType_ = src[0].type(); |
|
} |
|
|
|
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_) |
|
{ |
|
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_); |
|
curBtvKernelSize_ = btvKernelSize_; |
|
curAlpha_ = alpha_; |
|
} |
|
|
|
// calc high res motions |
|
calcRelativeMotions(forwardMotions, backwardMotions, lowResForwardMotions_, lowResBackwardMotions_, baseIdx, src[0].size()); |
|
|
|
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_); |
|
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_); |
|
|
|
forwardMaps_.resize(highResForwardMotions_.size()); |
|
backwardMaps_.resize(highResForwardMotions_.size()); |
|
for (size_t i = 0; i < highResForwardMotions_.size(); ++i) |
|
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]); |
|
|
|
// initial estimation |
|
const Size lowResSize = src[0].size(); |
|
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_); |
|
|
|
resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_CUBIC); |
|
|
|
// iterations |
|
diffTerm_.create(highResSize, highRes_.type()); |
|
a_.create(highResSize, highRes_.type()); |
|
b_.create(highResSize, highRes_.type()); |
|
c_.create(lowResSize, highRes_.type()); |
|
|
|
for (int i = 0; i < iterations_; ++i) |
|
{ |
|
diffTerm_.setTo(Scalar::all(0)); |
|
|
|
for (size_t k = 0; k < src.size(); ++k) |
|
{ |
|
// a = M * Ih |
|
remap(highRes_, a_, backwardMaps_[k], noArray(), INTER_NEAREST); |
|
// b = HM * Ih |
|
GaussianBlur(a_, b_, Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
// c = DHM * Ih |
|
resize(b_, c_, lowResSize, 0, 0, INTER_NEAREST); |
|
|
|
diffSign(src[k], c_, c_); |
|
|
|
// a = Dt * diff |
|
upscale(c_, a_, scale_); |
|
// b = HtDt * diff |
|
GaussianBlur(a_, b_, Size(blurKernelSize_, blurKernelSize_), blurSigma_); |
|
// a = MtHtDt * diff |
|
remap(b_, a_, forwardMaps_[k], noArray(), INTER_NEAREST); |
|
|
|
add(diffTerm_, a_, diffTerm_); |
|
} |
|
|
|
if (lambda_ > 0) |
|
{ |
|
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_, btvWeights_, ubtvWeights_); |
|
addWeighted(diffTerm_, 1.0, regTerm_, -lambda_, 0.0, diffTerm_); |
|
} |
|
|
|
addWeighted(highRes_, 1.0, diffTerm_, tau_, 0.0, highRes_); |
|
} |
|
|
|
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_); |
|
highRes_(inner).copyTo(_dst); |
|
} |
|
|
|
void BTVL1_Base::collectGarbage() |
|
{ |
|
// Mat |
|
lowResForwardMotions_.clear(); |
|
lowResBackwardMotions_.clear(); |
|
|
|
highResForwardMotions_.clear(); |
|
highResBackwardMotions_.clear(); |
|
|
|
forwardMaps_.clear(); |
|
backwardMaps_.clear(); |
|
|
|
highRes_.release(); |
|
|
|
diffTerm_.release(); |
|
regTerm_.release(); |
|
a_.release(); |
|
b_.release(); |
|
c_.release(); |
|
|
|
#ifdef HAVE_OPENCL |
|
// UMat |
|
ulowResForwardMotions_.clear(); |
|
ulowResBackwardMotions_.clear(); |
|
|
|
uhighResForwardMotions_.clear(); |
|
uhighResBackwardMotions_.clear(); |
|
|
|
uforwardMaps_.clear(); |
|
ubackwardMaps_.clear(); |
|
|
|
uhighRes_.release(); |
|
|
|
udiffTerm_.release(); |
|
uregTerm_.release(); |
|
ua_.release(); |
|
ub_.release(); |
|
uc_.release(); |
|
#endif |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////// |
|
|
|
class BTVL1 : public BTVL1_Base |
|
{ |
|
public: |
|
BTVL1(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void initImpl(Ptr<FrameSource>& frameSource); |
|
bool ocl_initImpl(Ptr<FrameSource>& frameSource); |
|
|
|
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output); |
|
bool ocl_processImpl(Ptr<FrameSource>& frameSource, OutputArray output); |
|
|
|
private: |
|
void readNextFrame(Ptr<FrameSource>& frameSource); |
|
bool ocl_readNextFrame(Ptr<FrameSource>& frameSource); |
|
|
|
void processFrame(int idx); |
|
bool ocl_processFrame(int idx); |
|
|
|
int storePos_; |
|
int procPos_; |
|
int outPos_; |
|
|
|
// Mat |
|
Mat curFrame_; |
|
Mat prevFrame_; |
|
|
|
std::vector<Mat> frames_; |
|
std::vector<Mat> forwardMotions_; |
|
std::vector<Mat> backwardMotions_; |
|
std::vector<Mat> outputs_; |
|
|
|
std::vector<Mat> srcFrames_; |
|
std::vector<Mat> srcForwardMotions_; |
|
std::vector<Mat> srcBackwardMotions_; |
|
Mat finalOutput_; |
|
|
|
#ifdef HAVE_OPENCL |
|
// UMat |
|
UMat ucurFrame_; |
|
UMat uprevFrame_; |
|
|
|
std::vector<UMat> uframes_; |
|
std::vector<UMat> uforwardMotions_; |
|
std::vector<UMat> ubackwardMotions_; |
|
std::vector<UMat> uoutputs_; |
|
|
|
std::vector<UMat> usrcFrames_; |
|
std::vector<UMat> usrcForwardMotions_; |
|
std::vector<UMat> usrcBackwardMotions_; |
|
#endif |
|
}; |
|
|
|
BTVL1::BTVL1() |
|
{ |
|
temporalAreaRadius_ = 4; |
|
procPos_ = 0; |
|
outPos_ = 0; |
|
storePos_ = 0; |
|
} |
|
|
|
void BTVL1::collectGarbage() |
|
{ |
|
// Mat |
|
curFrame_.release(); |
|
prevFrame_.release(); |
|
|
|
frames_.clear(); |
|
forwardMotions_.clear(); |
|
backwardMotions_.clear(); |
|
outputs_.clear(); |
|
|
|
srcFrames_.clear(); |
|
srcForwardMotions_.clear(); |
|
srcBackwardMotions_.clear(); |
|
finalOutput_.release(); |
|
|
|
#ifdef HAVE_OPENCL |
|
// UMat |
|
ucurFrame_.release(); |
|
uprevFrame_.release(); |
|
|
|
uframes_.clear(); |
|
uforwardMotions_.clear(); |
|
ubackwardMotions_.clear(); |
|
uoutputs_.clear(); |
|
|
|
usrcFrames_.clear(); |
|
usrcForwardMotions_.clear(); |
|
usrcBackwardMotions_.clear(); |
|
#endif |
|
|
|
SuperResolution::collectGarbage(); |
|
BTVL1_Base::collectGarbage(); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool BTVL1::ocl_initImpl(Ptr<FrameSource>& frameSource) |
|
{ |
|
const int cacheSize = 2 * temporalAreaRadius_ + 1; |
|
|
|
uframes_.resize(cacheSize); |
|
uforwardMotions_.resize(cacheSize); |
|
ubackwardMotions_.resize(cacheSize); |
|
uoutputs_.resize(cacheSize); |
|
|
|
storePos_ = -1; |
|
|
|
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t) |
|
readNextFrame(frameSource); |
|
|
|
for (int i = 0; i <= temporalAreaRadius_; ++i) |
|
processFrame(i); |
|
|
|
procPos_ = temporalAreaRadius_; |
|
outPos_ = -1; |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void BTVL1::initImpl(Ptr<FrameSource>& frameSource) |
|
{ |
|
const int cacheSize = 2 * temporalAreaRadius_ + 1; |
|
|
|
frames_.resize(cacheSize); |
|
forwardMotions_.resize(cacheSize); |
|
backwardMotions_.resize(cacheSize); |
|
outputs_.resize(cacheSize); |
|
|
|
CV_OCL_RUN(isUmat_, |
|
ocl_initImpl(frameSource)) |
|
|
|
storePos_ = -1; |
|
|
|
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t) |
|
readNextFrame(frameSource); |
|
|
|
for (int i = 0; i <= temporalAreaRadius_; ++i) |
|
processFrame(i); |
|
|
|
procPos_ = temporalAreaRadius_; |
|
outPos_ = -1; |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool BTVL1::ocl_processImpl(Ptr<FrameSource>& /*frameSource*/, OutputArray _output) |
|
{ |
|
const UMat& curOutput = at(outPos_, uoutputs_); |
|
curOutput.convertTo(_output, CV_8U); |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void BTVL1::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if (outPos_ >= storePos_) |
|
{ |
|
_output.release(); |
|
return; |
|
} |
|
|
|
readNextFrame(frameSource); |
|
|
|
if (procPos_ < storePos_) |
|
{ |
|
++procPos_; |
|
processFrame(procPos_); |
|
} |
|
++outPos_; |
|
|
|
CV_OCL_RUN(isUmat_, |
|
ocl_processImpl(frameSource, _output)) |
|
|
|
const Mat& curOutput = at(outPos_, outputs_); |
|
|
|
if (_output.kind() < _InputArray::OPENGL_BUFFER || _output.isUMat()) |
|
curOutput.convertTo(_output, CV_8U); |
|
else |
|
{ |
|
curOutput.convertTo(finalOutput_, CV_8U); |
|
arrCopy(finalOutput_, _output); |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool BTVL1::ocl_readNextFrame(Ptr<FrameSource>& /*frameSource*/) |
|
{ |
|
ucurFrame_.convertTo(at(storePos_, uframes_), CV_32F); |
|
|
|
if (storePos_ > 0) |
|
{ |
|
opticalFlow_->calc(uprevFrame_, ucurFrame_, at(storePos_ - 1, uforwardMotions_)); |
|
opticalFlow_->calc(ucurFrame_, uprevFrame_, at(storePos_, ubackwardMotions_)); |
|
} |
|
|
|
ucurFrame_.copyTo(uprevFrame_); |
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void BTVL1::readNextFrame(Ptr<FrameSource>& frameSource) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
frameSource->nextFrame(curFrame_); |
|
if (curFrame_.empty()) |
|
return; |
|
|
|
#ifdef HAVE_OPENCL |
|
if (isUmat_) |
|
curFrame_.copyTo(ucurFrame_); |
|
#endif |
|
++storePos_; |
|
|
|
CV_OCL_RUN(isUmat_, |
|
ocl_readNextFrame(frameSource)) |
|
|
|
curFrame_.convertTo(at(storePos_, frames_), CV_32F); |
|
|
|
if (storePos_ > 0) |
|
{ |
|
opticalFlow_->calc(prevFrame_, curFrame_, at(storePos_ - 1, forwardMotions_)); |
|
opticalFlow_->calc(curFrame_, prevFrame_, at(storePos_, backwardMotions_)); |
|
} |
|
|
|
curFrame_.copyTo(prevFrame_); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
bool BTVL1::ocl_processFrame(int idx) |
|
{ |
|
const int startIdx = std::max(idx - temporalAreaRadius_, 0); |
|
const int procIdx = idx; |
|
const int endIdx = std::min(startIdx + 2 * temporalAreaRadius_, storePos_); |
|
|
|
const int count = endIdx - startIdx + 1; |
|
|
|
usrcFrames_.resize(count); |
|
usrcForwardMotions_.resize(count); |
|
usrcBackwardMotions_.resize(count); |
|
|
|
int baseIdx = -1; |
|
|
|
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k) |
|
{ |
|
if (i == procIdx) |
|
baseIdx = k; |
|
|
|
usrcFrames_[k] = at(i, uframes_); |
|
|
|
if (i < endIdx) |
|
usrcForwardMotions_[k] = at(i, uforwardMotions_); |
|
if (i > startIdx) |
|
usrcBackwardMotions_[k] = at(i, ubackwardMotions_); |
|
} |
|
|
|
process(usrcFrames_, at(idx, uoutputs_), usrcForwardMotions_, usrcBackwardMotions_, baseIdx); |
|
|
|
return true; |
|
} |
|
|
|
#endif |
|
|
|
void BTVL1::processFrame(int idx) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_OCL_RUN(isUmat_, |
|
ocl_processFrame(idx)) |
|
|
|
const int startIdx = std::max(idx - temporalAreaRadius_, 0); |
|
const int procIdx = idx; |
|
const int endIdx = std::min(startIdx + 2 * temporalAreaRadius_, storePos_); |
|
|
|
const int count = endIdx - startIdx + 1; |
|
|
|
srcFrames_.resize(count); |
|
srcForwardMotions_.resize(count); |
|
srcBackwardMotions_.resize(count); |
|
|
|
int baseIdx = -1; |
|
|
|
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k) |
|
{ |
|
if (i == procIdx) |
|
baseIdx = k; |
|
|
|
srcFrames_[k] = at(i, frames_); |
|
|
|
if (i < endIdx) |
|
srcForwardMotions_[k] = at(i, forwardMotions_); |
|
if (i > startIdx) |
|
srcBackwardMotions_[k] = at(i, backwardMotions_); |
|
} |
|
|
|
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx); |
|
} |
|
} |
|
|
|
Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1() |
|
{ |
|
return makePtr<BTVL1>(); |
|
}
|
|
|