mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
209 lines
8.1 KiB
209 lines
8.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int, int, double, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorMOG>(); } |
|
|
|
#else |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace mog |
|
{ |
|
void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var, |
|
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma, |
|
cudaStream_t stream); |
|
void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
const int defaultNMixtures = 5; |
|
const int defaultHistory = 200; |
|
const float defaultBackgroundRatio = 0.7f; |
|
const float defaultVarThreshold = 2.5f * 2.5f; |
|
const float defaultNoiseSigma = 30.0f * 0.5f; |
|
const float defaultInitialWeight = 0.05f; |
|
|
|
class MOGImpl : public cuda::BackgroundSubtractorMOG |
|
{ |
|
public: |
|
MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma); |
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1); |
|
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream); |
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const; |
|
void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const; |
|
|
|
int getHistory() const { return history_; } |
|
void setHistory(int nframes) { history_ = nframes; } |
|
|
|
int getNMixtures() const { return nmixtures_; } |
|
void setNMixtures(int nmix) { nmixtures_ = nmix; } |
|
|
|
double getBackgroundRatio() const { return backgroundRatio_; } |
|
void setBackgroundRatio(double backgroundRatio) { backgroundRatio_ = (float) backgroundRatio; } |
|
|
|
double getNoiseSigma() const { return noiseSigma_; } |
|
void setNoiseSigma(double noiseSigma) { noiseSigma_ = (float) noiseSigma; } |
|
|
|
private: |
|
//! re-initiaization method |
|
void initialize(Size frameSize, int frameType); |
|
|
|
int history_; |
|
int nmixtures_; |
|
float backgroundRatio_; |
|
float noiseSigma_; |
|
|
|
float varThreshold_; |
|
|
|
Size frameSize_; |
|
int frameType_; |
|
int nframes_; |
|
|
|
GpuMat weight_; |
|
GpuMat sortKey_; |
|
GpuMat mean_; |
|
GpuMat var_; |
|
}; |
|
|
|
MOGImpl::MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma) : |
|
frameSize_(0, 0), frameType_(0), nframes_(0) |
|
{ |
|
history_ = history > 0 ? history : defaultHistory; |
|
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : defaultNMixtures, 8); |
|
backgroundRatio_ = backgroundRatio > 0 ? (float) backgroundRatio : defaultBackgroundRatio; |
|
noiseSigma_ = noiseSigma > 0 ? (float) noiseSigma : defaultNoiseSigma; |
|
|
|
varThreshold_ = defaultVarThreshold; |
|
} |
|
|
|
void MOGImpl::apply(InputArray image, OutputArray fgmask, double learningRate) |
|
{ |
|
apply(image, fgmask, learningRate, Stream::Null()); |
|
} |
|
|
|
void MOGImpl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream) |
|
{ |
|
using namespace cv::cuda::device::mog; |
|
|
|
GpuMat frame = _frame.getGpuMat(); |
|
|
|
CV_Assert( frame.depth() == CV_8U ); |
|
|
|
int ch = frame.channels(); |
|
int work_ch = ch; |
|
|
|
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels()) |
|
initialize(frame.size(), frame.type()); |
|
|
|
_fgmask.create(frameSize_, CV_8UC1); |
|
GpuMat fgmask = _fgmask.getGpuMat(); |
|
|
|
++nframes_; |
|
learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(nframes_, history_); |
|
CV_Assert( learningRate >= 0 ); |
|
|
|
mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_, |
|
varThreshold_, (float) learningRate, backgroundRatio_, noiseSigma_, |
|
StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void MOGImpl::getBackgroundImage(OutputArray backgroundImage) const |
|
{ |
|
getBackgroundImage(backgroundImage, Stream::Null()); |
|
} |
|
|
|
void MOGImpl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const |
|
{ |
|
using namespace cv::cuda::device::mog; |
|
|
|
_backgroundImage.create(frameSize_, frameType_); |
|
GpuMat backgroundImage = _backgroundImage.getGpuMat(); |
|
|
|
getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio_, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void MOGImpl::initialize(Size frameSize, int frameType) |
|
{ |
|
CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 ); |
|
|
|
frameSize_ = frameSize; |
|
frameType_ = frameType; |
|
|
|
int ch = CV_MAT_CN(frameType); |
|
int work_ch = ch; |
|
|
|
// for each gaussian mixture of each pixel bg model we store |
|
// the mixture sort key (w/sum_of_variances), the mixture weight (w), |
|
// the mean (nchannels values) and |
|
// the diagonal covariance matrix (another nchannels values) |
|
|
|
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
|
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); |
|
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
|
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); |
|
|
|
weight_.setTo(cv::Scalar::all(0)); |
|
sortKey_.setTo(cv::Scalar::all(0)); |
|
mean_.setTo(cv::Scalar::all(0)); |
|
var_.setTo(cv::Scalar::all(0)); |
|
|
|
nframes_ = 0; |
|
} |
|
} |
|
|
|
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma) |
|
{ |
|
return makePtr<MOGImpl>(history, nmixtures, backgroundRatio, noiseSigma); |
|
} |
|
|
|
#endif
|
|
|