Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

477 lines
17 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
cv::ocl::OpticalFlowDual_TVL1_OCL::OpticalFlowDual_TVL1_OCL()
{
tau = 0.25;
lambda = 0.15;
theta = 0.3;
nscales = 5;
warps = 5;
epsilon = 0.01;
iterations = 300;
useInitialFlow = false;
}
void cv::ocl::OpticalFlowDual_TVL1_OCL::operator()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy)
{
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
CV_Assert( I0.size() == I1.size() );
CV_Assert( I0.type() == I1.type() );
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
CV_Assert( nscales > 0 );
// allocate memory for the pyramid structure
I0s.resize(nscales);
I1s.resize(nscales);
u1s.resize(nscales);
u2s.resize(nscales);
//I0s_step == I1s_step
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0);
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0);
if (!useInitialFlow)
{
flowx.create(I0.size(), CV_32FC1);
flowy.create(I0.size(), CV_32FC1);
}
//u1s_step != u2s_step
u1s[0] = flowx;
u2s[0] = flowy;
I1x_buf.create(I0.size(), CV_32FC1);
I1y_buf.create(I0.size(), CV_32FC1);
I1w_buf.create(I0.size(), CV_32FC1);
I1wx_buf.create(I0.size(), CV_32FC1);
I1wy_buf.create(I0.size(), CV_32FC1);
grad_buf.create(I0.size(), CV_32FC1);
rho_c_buf.create(I0.size(), CV_32FC1);
p11_buf.create(I0.size(), CV_32FC1);
p12_buf.create(I0.size(), CV_32FC1);
p21_buf.create(I0.size(), CV_32FC1);
p22_buf.create(I0.size(), CV_32FC1);
diff_buf.create(I0.size(), CV_32FC1);
// create the scales
for (int s = 1; s < nscales; ++s)
{
ocl::pyrDown(I0s[s - 1], I0s[s]);
ocl::pyrDown(I1s[s - 1], I1s[s]);
if (I0s[s].cols < 16 || I0s[s].rows < 16)
{
nscales = s;
break;
}
if (useInitialFlow)
{
ocl::pyrDown(u1s[s - 1], u1s[s]);
ocl::pyrDown(u2s[s - 1], u2s[s]);
ocl::multiply(0.5, u1s[s], u1s[s]);
ocl::multiply(0.5, u2s[s], u2s[s]);
}
}
// pyramidal structure for computing the optical flow
for (int s = nscales - 1; s >= 0; --s)
{
// compute the optical flow at the current scale
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
// if this was the last scale, finish now
if (s == 0)
break;
// otherwise, upsample the optical flow
// zoom the optical flow for the next finer scale
ocl::resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
ocl::resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
// scale the optical flow with the appropriate zoom factor
multiply(2, u1s[s - 1], u1s[s - 1]);
multiply(2, u2s[s - 1], u2s[s - 1]);
}
}
namespace ocl_tvl1flow
{
void centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy);
void warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y,
oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy,
oclMat &grad, oclMat &rho);
void estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,
oclMat &rho_c, oclMat &p11, oclMat &p12,
oclMat &p21, oclMat &p22, oclMat &u1,
oclMat &u2, oclMat &error, float l_t, float theta, char calc_error);
void estimateDualVariables(oclMat &u1, oclMat &u2,
oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut);
}
void cv::ocl::OpticalFlowDual_TVL1_OCL::procOneScale(const oclMat &I0, const oclMat &I1, oclMat &u1, oclMat &u2)
{
using namespace ocl_tvl1flow;
const double scaledEpsilon = epsilon * epsilon * I0.size().area();
CV_DbgAssert( I1.size() == I0.size() );
CV_DbgAssert( I1.type() == I0.type() );
CV_DbgAssert( u1.empty() || u1.size() == I0.size() );
CV_DbgAssert( u2.size() == u1.size() );
if (u1.empty())
{
u1.create(I0.size(), CV_32FC1);
u1.setTo(Scalar::all(0));
u2.create(I0.size(), CV_32FC1);
u2.setTo(Scalar::all(0));
}
oclMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
centeredGradient(I1, I1x, I1y);
oclMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
oclMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
p11.setTo(Scalar::all(0));
p12.setTo(Scalar::all(0));
p21.setTo(Scalar::all(0));
p22.setTo(Scalar::all(0));
oclMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
const float l_t = static_cast<float>(lambda * theta);
const float taut = static_cast<float>(tau / theta);
for (int warpings = 0; warpings < warps; ++warpings)
{
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c);
double error = std::numeric_limits<double>::max();
double prev_error = 0;
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
{
// some tweaks to make sum operation less frequently
char calc_error = (n & 0x1) && (prev_error < scaledEpsilon);
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22,
u1, u2, diff, l_t, static_cast<float>(theta), calc_error);
if(calc_error)
{
error = ocl::sum(diff)[0];
prev_error = error;
}
else
{
error = std::numeric_limits<double>::max();
prev_error -= scaledEpsilon;
}
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut);
}
}
}
void cv::ocl::OpticalFlowDual_TVL1_OCL::collectGarbage()
{
I0s.clear();
I1s.clear();
u1s.clear();
u2s.clear();
I1x_buf.release();
I1y_buf.release();
I1w_buf.release();
I1wx_buf.release();
I1wy_buf.release();
grad_buf.release();
rho_c_buf.release();
p11_buf.release();
p12_buf.release();
p21_buf.release();
p22_buf.release();
diff_buf.release();
norm_buf.release();
}
void ocl_tvl1flow::centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy)
{
Context *clCxt = src.clCxt;
size_t localThreads[3] = {32, 8, 1};
size_t globalThreads[3] = {src.cols, src.rows, 1};
int srcElementSize = src.elemSize();
int src_step = src.step/srcElementSize;
int dElememntSize = dx.elemSize();
int dx_step = dx.step/dElememntSize;
String kernelName = "centeredGradientKernel";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&src.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&src.cols));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&src.rows));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&src_step));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&dx.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&dy.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&dx_step));
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThreads, localThreads, args, -1, -1);
}
void ocl_tvl1flow::estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut)
{
Context *clCxt = u1.clCxt;
size_t localThread[] = {32, 8, 1};
size_t globalThread[] =
{
u1.cols,
u1.rows,
1
};
int u1_element_size = u1.elemSize();
int u1_step = u1.step/u1_element_size;
int u2_element_size = u2.elemSize();
int u2_step = u2.step/u2_element_size;
int p11_element_size = p11.elemSize();
int p11_step = p11.step/p11_element_size;
int u1_offset_y = u1.offset/u1.step;
int u1_offset_x = u1.offset%u1.step;
u1_offset_x = u1_offset_x/u1.elemSize();
int u2_offset_y = u2.offset/u2.step;
int u2_offset_x = u2.offset%u2.step;
u2_offset_x = u2_offset_x/u2.elemSize();
String kernelName = "estimateDualVariablesKernel";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u1.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1.cols));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1.rows));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_step));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u2.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p11.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&p11_step));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p12.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p21.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p22.data));
args.push_back( std::make_pair( sizeof(cl_float), (void*)&taut));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_step));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_x));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_y));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_x));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_y));
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
}
void ocl_tvl1flow::estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,
oclMat &rho_c, oclMat &p11, oclMat &p12,
oclMat &p21, oclMat &p22, oclMat &u1,
oclMat &u2, oclMat &error, float l_t, float theta, char calc_error)
{
Context* clCxt = I1wx.clCxt;
size_t localThread[] = {32, 8, 1};
size_t globalThread[] =
{
I1wx.cols,
I1wx.rows,
1
};
int I1wx_element_size = I1wx.elemSize();
int I1wx_step = I1wx.step/I1wx_element_size;
int u1_element_size = u1.elemSize();
int u1_step = u1.step/u1_element_size;
int u2_element_size = u2.elemSize();
int u2_step = u2.step/u2_element_size;
int u1_offset_y = u1.offset/u1.step;
int u1_offset_x = u1.offset%u1.step;
u1_offset_x = u1_offset_x/u1.elemSize();
int u2_offset_y = u2.offset/u2.step;
int u2_offset_x = u2.offset%u2.step;
u2_offset_x = u2_offset_x/u2.elemSize();
String kernelName = "estimateUKernel";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wx.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1wx.cols));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1wx.rows));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1wx_step));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wy.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&grad.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&rho_c.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p11.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p12.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p21.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&p22.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u1.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_step));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u2.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&error.data));
args.push_back( std::make_pair( sizeof(cl_float), (void*)&l_t));
args.push_back( std::make_pair( sizeof(cl_float), (void*)&theta));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_step));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_x));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_y));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_x));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_y));
args.push_back( std::make_pair( sizeof(cl_char), (void*)&calc_error));
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
}
void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho)
{
Context* clCxt = I0.clCxt;
int u1ElementSize = u1.elemSize();
int u1Step = u1.step/u1ElementSize;
int u2ElementSize = u2.elemSize();
int u2Step = u2.step/u2ElementSize;
int I0ElementSize = I0.elemSize();
int I0Step = I0.step/I0ElementSize;
int I1w_element_size = I1w.elemSize();
int I1w_step = I1w.step/I1w_element_size;
int u1_offset_y = u1.offset/u1.step;
int u1_offset_x = u1.offset%u1.step;
u1_offset_x = u1_offset_x/u1.elemSize();
int u2_offset_y = u2.offset/u2.step;
int u2_offset_x = u2.offset%u2.step;
u2_offset_x = u2_offset_x/u2.elemSize();
size_t localThread[] = {32, 8, 1};
size_t globalThread[] =
{
I0.cols,
I0.rows,
1
};
cl_mem I1_tex;
cl_mem I1x_tex;
cl_mem I1y_tex;
I1_tex = bindTexture(I1);
I1x_tex = bindTexture(I1x);
I1y_tex = bindTexture(I1y);
String kernelName = "warpBackwardKernel";
std::vector< std::pair<size_t, const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I0.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I0Step));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I0.cols));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I0.rows));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1_tex));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1x_tex));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1y_tex));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u1.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1Step));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&u2.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1w.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wx.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&I1wy.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&grad.data));
args.push_back( std::make_pair( sizeof(cl_mem), (void*)&rho.data));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&I1w_step));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2Step));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_x));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u1_offset_y));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_x));
args.push_back( std::make_pair( sizeof(cl_int), (void*)&u2_offset_y));
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
releaseTexture(I1_tex);
releaseTexture(I1x_tex);
releaseTexture(I1y_tex);
}