Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
418 lines
12 KiB
418 lines
12 KiB
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace testing; |
|
|
|
namespace { |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// HOG |
|
|
|
DEF_PARAM_TEST_1(Image, string); |
|
|
|
PERF_TEST_P(Image, ObjDetect_HOG, Values<string>("gpu/hog/road.png")) |
|
{ |
|
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<cv::Rect> found_locations; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_img(img); |
|
|
|
cv::gpu::HOGDescriptor d_hog; |
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
d_hog.detectMultiScale(d_img, found_locations); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_hog.detectMultiScale(d_img, found_locations); |
|
} |
|
} |
|
else |
|
{ |
|
cv::HOGDescriptor hog; |
|
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
hog.detectMultiScale(img, found_locations); |
|
|
|
TEST_CYCLE() |
|
{ |
|
hog.detectMultiScale(img, found_locations); |
|
} |
|
} |
|
|
|
SANITY_CHECK(found_locations); |
|
} |
|
|
|
//===========test for CalTech data =============// |
|
DEF_PARAM_TEST_1(HOG, string); |
|
|
|
PERF_TEST_P(HOG, CalTech, Values<string>("gpu/caltech/image_00000009_0.png", "gpu/caltech/image_00000032_0.png", |
|
"gpu/caltech/image_00000165_0.png", "gpu/caltech/image_00000261_0.png", "gpu/caltech/image_00000469_0.png", |
|
"gpu/caltech/image_00000527_0.png", "gpu/caltech/image_00000574_0.png")) |
|
{ |
|
cv::Mat img = readImage(GetParam(), cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
std::vector<cv::Rect> found_locations; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_img(img); |
|
|
|
cv::gpu::HOGDescriptor d_hog; |
|
d_hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
d_hog.detectMultiScale(d_img, found_locations); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_hog.detectMultiScale(d_img, found_locations); |
|
} |
|
} |
|
else |
|
{ |
|
cv::HOGDescriptor hog; |
|
hog.setSVMDetector(cv::gpu::HOGDescriptor::getDefaultPeopleDetector()); |
|
|
|
hog.detectMultiScale(img, found_locations); |
|
|
|
TEST_CYCLE() |
|
{ |
|
hog.detectMultiScale(img, found_locations); |
|
} |
|
} |
|
|
|
SANITY_CHECK(found_locations); |
|
} |
|
|
|
//================================================= ICF SoftCascade =================================================// |
|
|
|
typedef pair<string, string> pair_string; |
|
DEF_PARAM_TEST_1(SoftCascade, pair_string); |
|
|
|
|
|
// struct SoftCascadeTest : public perf::TestBaseWithParam<roi_fixture_t> |
|
// { |
|
// typedef cv::gpu::SoftCascade::Detection detection_t; |
|
// static cv::Rect getFromTable(int idx) |
|
// { |
|
// static const cv::Rect rois[] = |
|
// { |
|
// cv::Rect( 65, 20, 35, 80), |
|
// cv::Rect( 95, 35, 45, 40), |
|
// cv::Rect( 45, 35, 45, 40), |
|
// cv::Rect( 25, 27, 50, 45), |
|
// cv::Rect(100, 50, 45, 40), |
|
|
|
// cv::Rect( 60, 30, 45, 40), |
|
// cv::Rect( 40, 55, 50, 40), |
|
// cv::Rect( 48, 37, 72, 80), |
|
// cv::Rect( 48, 32, 85, 58), |
|
// cv::Rect( 48, 0, 32, 27) |
|
// }; |
|
|
|
// return rois[idx]; |
|
// } |
|
|
|
// static std::string itoa(long i) |
|
// { |
|
// static char s[65]; |
|
// sprintf(s, "%ld", i); |
|
// return std::string(s); |
|
// } |
|
|
|
// static std::string getImageName(int level) |
|
// { |
|
// time_t rawtime; |
|
// struct tm * timeinfo; |
|
// char buffer [80]; |
|
|
|
// time ( &rawtime ); |
|
// timeinfo = localtime ( &rawtime ); |
|
|
|
// strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo); |
|
// return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png"; |
|
// } |
|
|
|
// static void print(std::ostream &out, const detection_t& d) |
|
// { |
|
// out << "\x1b[32m[ detection]\x1b[0m (" |
|
// << std::setw(4) << d.x |
|
// << " " |
|
// << std::setw(4) << d.y |
|
// << ") (" |
|
// << std::setw(4) << d.w |
|
// << " " |
|
// << std::setw(4) << d.h |
|
// << ") " |
|
// << std::setw(12) << d.confidence |
|
// << std::endl; |
|
// } |
|
|
|
// static void printTotal(std::ostream &out, int detbytes) |
|
// { |
|
// out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(detection_t)) << std::endl; |
|
// } |
|
|
|
// static void writeResult(const cv::Mat& result, const int level) |
|
// { |
|
// std::string path = cv::tempfile(getImageName(level).c_str()); |
|
// cv::imwrite(path, result); |
|
// std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl; |
|
// } |
|
// }; |
|
|
|
typedef std::tr1::tuple<std::string, std::string> fixture_t; |
|
typedef perf::TestBaseWithParam<fixture_t> SoftCascadeTest; |
|
|
|
PERF_TEST_P(SoftCascadeTest, detect, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")))) |
|
{ |
|
if (runOnGpu) |
|
{ |
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
ASSERT_FALSE(cpu.empty()); |
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1), trois; |
|
rois.setTo(1); |
|
cv::gpu::transpose(rois, trois); |
|
cascade.detectMultiScale(colored, trois, objectBoxes); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cascade.detectMultiScale(colored, trois, objectBoxes); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat colored = readImage(GET_PARAM(1)); |
|
ASSERT_FALSE(colored.empty()); |
|
|
|
cv::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(getDataPath(GET_PARAM(0)))); |
|
|
|
std::vector<cv::Rect> rois; |
|
|
|
typedef cv::SoftCascade::Detection Detection; |
|
std::vector<Detection>objectBoxes; |
|
cascade.detectMultiScale(colored, rois, objectBoxes); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cascade.detectMultiScale(colored, rois, objectBoxes); |
|
} |
|
} |
|
} |
|
|
|
static cv::Rect getFromTable(int idx) |
|
{ |
|
static const cv::Rect rois[] = |
|
{ |
|
cv::Rect( 65, 20, 35, 80), |
|
cv::Rect( 95, 35, 45, 40), |
|
cv::Rect( 45, 35, 45, 40), |
|
cv::Rect( 25, 27, 50, 45), |
|
cv::Rect(100, 50, 45, 40), |
|
|
|
cv::Rect( 60, 30, 45, 40), |
|
cv::Rect( 40, 55, 50, 40), |
|
cv::Rect( 48, 37, 72, 80), |
|
cv::Rect( 48, 32, 85, 58), |
|
cv::Rect( 48, 0, 32, 27) |
|
}; |
|
|
|
return rois[idx]; |
|
} |
|
|
|
typedef std::tr1::tuple<std::string, std::string, int> roi_fixture_t; |
|
typedef perf::TestBaseWithParam<roi_fixture_t> SoftCascadeTestRoi; |
|
|
|
PERF_TEST_P(SoftCascadeTestRoi, detectInRoi, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
testing::Range(0, 5))) |
|
{ |
|
if (runOnGpu) |
|
{ |
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
ASSERT_FALSE(cpu.empty()); |
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
rois.setTo(0); |
|
|
|
int nroi = GET_PARAM(2); |
|
cv::RNG rng; |
|
for (int i = 0; i < nroi; ++i) |
|
{ |
|
cv::Rect r = getFromTable(rng(10)); |
|
cv::gpu::GpuMat sub(rois, r); |
|
sub.setTo(1); |
|
} |
|
|
|
cv::gpu::GpuMat trois; |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
TEST_CYCLE() |
|
{ |
|
curr = objectBoxes; |
|
cascade.detectMultiScale(colored, trois, curr); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
PERF_TEST_P(SoftCascadeTestRoi, detectEachRoi, |
|
testing::Combine( |
|
testing::Values(std::string("cv/cascadeandhog/sc_cvpr_2012_to_opencv.xml")), |
|
testing::Values(std::string("cv/cascadeandhog/bahnhof/image_00000000_0.png")), |
|
testing::Range(0, 10))) |
|
{ |
|
if (runOnGpu) |
|
{ |
|
cv::Mat cpu = readImage (GET_PARAM(1)); |
|
ASSERT_FALSE(cpu.empty()); |
|
cv::gpu::GpuMat colored(cpu); |
|
|
|
cv::gpu::SoftCascade cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath(GET_PARAM(0)))); |
|
|
|
cv::gpu::GpuMat objectBoxes(1, 16384 * 20, CV_8UC1), rois(cascade.getRoiSize(), CV_8UC1); |
|
rois.setTo(0); |
|
|
|
int idx = GET_PARAM(2); |
|
cv::Rect r = getFromTable(idx); |
|
cv::gpu::GpuMat sub(rois, r); |
|
sub.setTo(1); |
|
|
|
cv::gpu::GpuMat curr = objectBoxes; |
|
cv::gpu::GpuMat trois; |
|
cv::gpu::transpose(rois, trois); |
|
|
|
cascade.detectMultiScale(colored, trois, curr); |
|
|
|
TEST_CYCLE() |
|
{ |
|
curr = objectBoxes; |
|
cascade.detectMultiScale(colored, rois, curr); |
|
} |
|
} |
|
else |
|
{ |
|
FAIL(); |
|
} |
|
} |
|
|
|
|
|
/////////////////////////////////////////////////////////////// |
|
// HaarClassifier |
|
|
|
typedef pair<string, string> pair_string; |
|
DEF_PARAM_TEST_1(ImageAndCascade, pair_string); |
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_HaarClassifier, |
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/perf/haarcascade_frontalface_alt.xml"))) |
|
{ |
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_objects_buffer; |
|
|
|
d_cascade.detectMultiScale(d_img, d_objects_buffer); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_cascade.detectMultiScale(d_img, d_objects_buffer); |
|
} |
|
|
|
GPU_SANITY_CHECK(d_objects_buffer); |
|
} |
|
else |
|
{ |
|
cv::CascadeClassifier cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/perf/haarcascade_frontalface_alt.xml"))); |
|
|
|
std::vector<cv::Rect> rects; |
|
|
|
cascade.detectMultiScale(img, rects); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cascade.detectMultiScale(img, rects); |
|
} |
|
|
|
CPU_SANITY_CHECK(rects); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////// |
|
// LBP cascade |
|
|
|
PERF_TEST_P(ImageAndCascade, ObjDetect_LBPClassifier, |
|
Values<pair_string>(make_pair("gpu/haarcascade/group_1_640x480_VGA.pgm", "gpu/lbpcascade/lbpcascade_frontalface.xml"))) |
|
{ |
|
cv::Mat img = readImage(GetParam().first, cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(img.empty()); |
|
|
|
if (runOnGpu) |
|
{ |
|
cv::gpu::CascadeClassifier_GPU d_cascade; |
|
ASSERT_TRUE(d_cascade.load(perf::TestBase::getDataPath(GetParam().second))); |
|
|
|
cv::gpu::GpuMat d_img(img); |
|
cv::gpu::GpuMat d_gpu_rects; |
|
|
|
d_cascade.detectMultiScale(d_img, d_gpu_rects); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_cascade.detectMultiScale(d_img, d_gpu_rects); |
|
} |
|
|
|
GPU_SANITY_CHECK(d_gpu_rects); |
|
} |
|
else |
|
{ |
|
cv::CascadeClassifier cascade; |
|
ASSERT_TRUE(cascade.load(perf::TestBase::getDataPath("gpu/lbpcascade/lbpcascade_frontalface.xml"))); |
|
|
|
std::vector<cv::Rect> rects; |
|
|
|
cascade.detectMultiScale(img, rects); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cascade.detectMultiScale(img, rects); |
|
} |
|
|
|
CPU_SANITY_CHECK(rects); |
|
} |
|
} |
|
|
|
} // namespace
|
|
|