mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
14 KiB
392 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef OPENCV_TS_OCL_TEST_HPP |
|
#define OPENCV_TS_OCL_TEST_HPP |
|
|
|
#include "opencv2/ts.hpp" |
|
|
|
#include "opencv2/imgcodecs.hpp" |
|
#include "opencv2/videoio.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/imgproc/types_c.h" |
|
#include "opencv2/core/ocl.hpp" |
|
|
|
namespace cvtest { |
|
namespace ocl { |
|
|
|
using namespace cv; |
|
using namespace testing; |
|
|
|
inline std::vector<UMat> ToUMat(const std::vector<Mat>& src) |
|
{ |
|
std::vector<UMat> dst; |
|
dst.resize(src.size()); |
|
for (size_t i = 0; i < src.size(); ++i) |
|
{ |
|
src[i].copyTo(dst[i]); |
|
} |
|
return dst; |
|
} |
|
|
|
inline UMat ToUMat(const Mat& src) |
|
{ |
|
UMat dst; |
|
src.copyTo(dst); |
|
return dst; |
|
} |
|
|
|
inline UMat ToUMat(InputArray src) |
|
{ |
|
UMat dst; |
|
src.getMat().copyTo(dst); |
|
return dst; |
|
} |
|
|
|
extern int test_loop_times; |
|
|
|
#define MAX_VALUE 357 |
|
|
|
#define EXPECT_MAT_NORM(mat, eps) \ |
|
do \ |
|
{ \ |
|
EXPECT_LE(TestUtils::checkNorm1(mat), eps) \ |
|
} while ((void)0, 0) |
|
|
|
#undef EXPECT_MAT_NEAR |
|
#define EXPECT_MAT_NEAR(mat1, mat2, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(TestUtils::checkNorm2(mat1, mat2), eps) \ |
|
<< "Size: " << mat1.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
#define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ((mat1).type(), (mat2).type()); \ |
|
ASSERT_EQ((mat1).size(), (mat2).size()); \ |
|
EXPECT_LE(TestUtils::checkNormRelative((mat1), (mat2)), eps) \ |
|
<< "Size: " << (mat1).size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
#define EXPECT_MAT_N_DIFF(mat1, mat2, num) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
Mat diff; \ |
|
absdiff(mat1, mat2, diff); \ |
|
EXPECT_LE(countNonZero(diff.reshape(1)), num) \ |
|
<< "Size: " << mat1.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
#define OCL_EXPECT_MAT_N_DIFF(name, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ |
|
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ |
|
Mat diff, binary, binary_8; \ |
|
absdiff(name ## _roi, u ## name ## _roi, diff); \ |
|
Mat mask(diff.size(), CV_8UC(dst.channels()), cv::Scalar::all(255)); \ |
|
if (mask.cols > 2 && mask.rows > 2) \ |
|
mask(cv::Rect(1, 1, mask.cols - 2, mask.rows - 2)).setTo(0); \ |
|
cv::threshold(diff, binary, (double)eps, 255, cv::THRESH_BINARY); \ |
|
EXPECT_LE(countNonZero(binary.reshape(1)), (int)(binary.cols*binary.rows*5/1000)) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
binary.convertTo(binary_8, mask.type()); \ |
|
binary_8 = binary_8 & mask; \ |
|
EXPECT_LE(countNonZero(binary_8.reshape(1)), (int)((binary_8.cols+binary_8.rows)/100)) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
#define OCL_EXPECT_MATS_NEAR(name, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ |
|
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ |
|
EXPECT_LE(TestUtils::checkNorm2(name ## _roi, u ## name ## _roi), eps) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
Point _offset; \ |
|
Size _wholeSize; \ |
|
u ## name ## _roi.locateROI(_wholeSize, _offset); \ |
|
Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \ |
|
_mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \ |
|
ASSERT_EQ(name.type(), u ## name.type()); \ |
|
ASSERT_EQ(name.size(), u ## name.size()); \ |
|
EXPECT_LE(TestUtils::checkNorm2(name, u ## name, _mask), eps) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
#define OCL_EXPECT_MATS_NEAR_RELATIVE(name, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ |
|
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ |
|
EXPECT_LE(TestUtils::checkNormRelative(name ## _roi, u ## name ## _roi), eps) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
Point _offset; \ |
|
Size _wholeSize; \ |
|
name ## _roi.locateROI(_wholeSize, _offset); \ |
|
Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \ |
|
_mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \ |
|
ASSERT_EQ(name.type(), u ## name.type()); \ |
|
ASSERT_EQ(name.size(), u ## name.size()); \ |
|
EXPECT_LE(TestUtils::checkNormRelative(name, u ## name, _mask), eps) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
//for sparse matrix |
|
#define OCL_EXPECT_MATS_NEAR_RELATIVE_SPARSE(name, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ |
|
ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ |
|
EXPECT_LE(TestUtils::checkNormRelativeSparse(name ## _roi, u ## name ## _roi), eps) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
Point _offset; \ |
|
Size _wholeSize; \ |
|
name ## _roi.locateROI(_wholeSize, _offset); \ |
|
Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \ |
|
_mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \ |
|
ASSERT_EQ(name.type(), u ## name.type()); \ |
|
ASSERT_EQ(name.size(), u ## name.size()); \ |
|
EXPECT_LE(TestUtils::checkNormRelativeSparse(name, u ## name, _mask), eps) \ |
|
<< "Size: " << name ## _roi.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
#undef EXPECT_MAT_SIMILAR |
|
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ |
|
do \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkSimilarity(mat1, mat2), eps) \ |
|
<< "Size: " << mat1.size() << std::endl; \ |
|
} while ((void)0, 0) |
|
|
|
using perf::MatDepth; |
|
using perf::MatType; |
|
|
|
#define OCL_RNG_SEED 123456 |
|
|
|
struct TestUtils |
|
{ |
|
cv::RNG rng; |
|
|
|
TestUtils() |
|
{ |
|
rng = cv::RNG(OCL_RNG_SEED); |
|
} |
|
|
|
int randomInt(int minVal, int maxVal) |
|
{ |
|
return rng.uniform(minVal, maxVal); |
|
} |
|
|
|
double randomDouble(double minVal, double maxVal) |
|
{ |
|
return rng.uniform(minVal, maxVal); |
|
} |
|
|
|
double randomDoubleLog(double minVal, double maxVal) |
|
{ |
|
double logMin = log((double)minVal + 1); |
|
double logMax = log((double)maxVal + 1); |
|
double pow = rng.uniform(logMin, logMax); |
|
double v = exp(pow) - 1; |
|
CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal))); |
|
return v; |
|
} |
|
|
|
Size randomSize(int minVal, int maxVal) |
|
{ |
|
#if 1 |
|
return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal)); |
|
#else |
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); |
|
#endif |
|
} |
|
|
|
Size randomSize(int minValX, int maxValX, int minValY, int maxValY) |
|
{ |
|
#if 1 |
|
return cv::Size((int)randomDoubleLog(minValX, maxValX), (int)randomDoubleLog(minValY, maxValY)); |
|
#else |
|
return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); |
|
#endif |
|
} |
|
|
|
Scalar randomScalar(double minVal, double maxVal) |
|
{ |
|
return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); |
|
} |
|
|
|
Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false) |
|
{ |
|
RNG dataRng(rng.next()); |
|
return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi); |
|
} |
|
|
|
struct Border |
|
{ |
|
int top, bot, lef, rig; |
|
}; |
|
|
|
Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE) |
|
{ |
|
Border border = { |
|
(int)randomDoubleLog(minValue, maxValue), |
|
(int)randomDoubleLog(minValue, maxValue), |
|
(int)randomDoubleLog(minValue, maxValue), |
|
(int)randomDoubleLog(minValue, maxValue) |
|
}; |
|
return border; |
|
} |
|
|
|
void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal) |
|
{ |
|
Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot); |
|
whole = randomMat(wholeSize, type, minVal, maxVal, false); |
|
subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height)); |
|
} |
|
|
|
// If the two vectors are not equal, it will return the difference in vector size |
|
// Else it will return (total diff of each 1 and 2 rects covered pixels)/(total 1 rects covered pixels) |
|
// The smaller, the better matched |
|
static double checkRectSimilarity(const cv::Size & sz, std::vector<cv::Rect>& ob1, std::vector<cv::Rect>& ob2); |
|
|
|
//! read image from testdata folder. |
|
static cv::Mat readImage(const String &fileName, int flags = cv::IMREAD_COLOR); |
|
static cv::Mat readImageType(const String &fname, int type); |
|
|
|
static double checkNorm1(InputArray m, InputArray mask = noArray()); |
|
static double checkNorm2(InputArray m1, InputArray m2, InputArray mask = noArray()); |
|
static double checkSimilarity(InputArray m1, InputArray m2); |
|
static void showDiff(InputArray _src, InputArray _gold, InputArray _actual, double eps, bool alwaysShow); |
|
|
|
static inline double checkNormRelative(InputArray m1, InputArray m2, InputArray mask = noArray()) |
|
{ |
|
return cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask) / |
|
std::max((double)std::numeric_limits<float>::epsilon(), |
|
(double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF))); |
|
} |
|
|
|
static inline double checkNormRelativeSparse(InputArray m1, InputArray m2, InputArray mask = noArray()) |
|
{ |
|
double norm_inf = cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask); |
|
double norm_rel = norm_inf / |
|
std::max((double)std::numeric_limits<float>::epsilon(), |
|
(double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF))); |
|
return std::min(norm_inf, norm_rel); |
|
} |
|
|
|
}; |
|
|
|
#define TEST_DECLARE_INPUT_PARAMETER(name) Mat name, name ## _roi; UMat u ## name, u ## name ## _roi |
|
#define TEST_DECLARE_OUTPUT_PARAMETER(name) TEST_DECLARE_INPUT_PARAMETER(name) |
|
|
|
#define UMAT_UPLOAD_INPUT_PARAMETER(name) \ |
|
do \ |
|
{ \ |
|
name.copyTo(u ## name); \ |
|
Size _wholeSize; Point ofs; name ## _roi.locateROI(_wholeSize, ofs); \ |
|
u ## name ## _roi = u ## name(Rect(ofs.x, ofs.y, name ## _roi.size().width, name ## _roi.size().height)); \ |
|
} while ((void)0, 0) |
|
|
|
#define UMAT_UPLOAD_OUTPUT_PARAMETER(name) UMAT_UPLOAD_INPUT_PARAMETER(name) |
|
|
|
template <typename T> |
|
struct TSTestWithParam : public TestUtils, public ::testing::TestWithParam<T> |
|
{ |
|
|
|
}; |
|
|
|
#undef PARAM_TEST_CASE |
|
#define PARAM_TEST_CASE(name, ...) struct name : public ::cvtest::ocl::TSTestWithParam< testing::tuple< __VA_ARGS__ > > |
|
|
|
#ifndef IMPLEMENT_PARAM_CLASS |
|
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
|
class name \ |
|
{ \ |
|
public: \ |
|
name ( type arg = type ()) : val_(arg) {} \ |
|
operator type () const {return val_;} \ |
|
private: \ |
|
type val_; \ |
|
}; \ |
|
inline void PrintTo( name param, std::ostream* os) \ |
|
{ \ |
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ |
|
} |
|
|
|
IMPLEMENT_PARAM_CLASS(Channels, int) |
|
#endif // IMPLEMENT_PARAM_CLASS |
|
|
|
#define OCL_TEST_P TEST_P |
|
#define OCL_TEST_F(name, ...) typedef name OCL_##name; TEST_F(OCL_##name, __VA_ARGS__) |
|
#define OCL_TEST(name, ...) TEST(OCL_##name, __VA_ARGS__) |
|
|
|
#define OCL_OFF(...) cv::ocl::setUseOpenCL(false); __VA_ARGS__ ; |
|
#define OCL_ON(...) cv::ocl::setUseOpenCL(true); __VA_ARGS__ ; |
|
|
|
#define OCL_ALL_DEPTHS Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F) |
|
#define OCL_ALL_DEPTHS_16F Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F, CV_16F) |
|
#define OCL_ALL_CHANNELS Values(1, 2, 3, 4) |
|
|
|
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA, INTER_LINEAR_EXACT) |
|
CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) |
|
CV_ENUM(BorderType, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101) |
|
|
|
#define OCL_INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator) \ |
|
INSTANTIATE_TEST_CASE_P(OCL_ ## prefix, test_case_name, generator) |
|
|
|
} } // namespace cvtest::ocl |
|
|
|
namespace opencv_test { |
|
namespace ocl { |
|
using namespace cvtest::ocl; |
|
}} // namespace |
|
|
|
#endif // OPENCV_TS_OCL_TEST_HPP
|
|
|