mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
214 lines
7.7 KiB
214 lines
7.7 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int, bool, int, int) { throw_no_cuda(); return Ptr<cv::cuda::FastFeatureDetector>(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace fast |
|
{ |
|
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, unsigned int* d_counter, cudaStream_t stream); |
|
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, unsigned int* d_counter, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
class FAST_Impl : public cv::cuda::FastFeatureDetector |
|
{ |
|
public: |
|
FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints); |
|
|
|
virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask); |
|
virtual void detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream); |
|
|
|
virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
virtual void setThreshold(int threshold) { threshold_ = threshold; } |
|
virtual int getThreshold() const { return threshold_; } |
|
|
|
virtual void setNonmaxSuppression(bool f) { nonmaxSuppression_ = f; } |
|
virtual bool getNonmaxSuppression() const { return nonmaxSuppression_; } |
|
|
|
virtual void setMaxNumPoints(int max_npoints) { max_npoints_ = max_npoints; } |
|
virtual int getMaxNumPoints() const { return max_npoints_; } |
|
|
|
virtual void setType(int type) { CV_Assert( type == TYPE_9_16 ); } |
|
virtual int getType() const { return TYPE_9_16; } |
|
|
|
private: |
|
int threshold_; |
|
bool nonmaxSuppression_; |
|
int max_npoints_; |
|
|
|
unsigned int* d_counter; |
|
}; |
|
|
|
FAST_Impl::FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints) : |
|
threshold_(threshold), nonmaxSuppression_(nonmaxSuppression), max_npoints_(max_npoints) |
|
{ |
|
} |
|
|
|
void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) |
|
{ |
|
if (_image.empty()) |
|
{ |
|
keypoints.clear(); |
|
return; |
|
} |
|
|
|
BufferPool pool(Stream::Null()); |
|
GpuMat d_keypoints = pool.getBuffer(ROWS_COUNT, max_npoints_, CV_32FC1); |
|
|
|
detectAsync(_image, d_keypoints, _mask, Stream::Null()); |
|
convert(d_keypoints, keypoints); |
|
} |
|
|
|
void FAST_Impl::detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream) |
|
{ |
|
using namespace cv::cuda::device::fast; |
|
|
|
cudaSafeCall( cudaMalloc(&d_counter, sizeof(unsigned int)) ); |
|
|
|
const GpuMat img = _image.getGpuMat(); |
|
const GpuMat mask = _mask.getGpuMat(); |
|
|
|
CV_Assert( img.type() == CV_8UC1 ); |
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()) ); |
|
|
|
BufferPool pool(stream); |
|
|
|
GpuMat kpLoc = pool.getBuffer(1, max_npoints_, CV_16SC2); |
|
|
|
GpuMat score; |
|
if (nonmaxSuppression_) |
|
{ |
|
score = pool.getBuffer(img.size(), CV_32SC1); |
|
score.setTo(Scalar::all(0), stream); |
|
} |
|
|
|
int count = calcKeypoints_gpu(img, mask, kpLoc.ptr<short2>(), max_npoints_, score, threshold_, d_counter, StreamAccessor::getStream(stream)); |
|
count = std::min(count, max_npoints_); |
|
|
|
if (count == 0) |
|
{ |
|
_keypoints.release(); |
|
return; |
|
} |
|
|
|
ensureSizeIsEnough(ROWS_COUNT, count, CV_32FC1, _keypoints); |
|
GpuMat& keypoints = _keypoints.getGpuMatRef(); |
|
|
|
if (nonmaxSuppression_) |
|
{ |
|
count = nonmaxSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW), d_counter, StreamAccessor::getStream(stream)); |
|
if (count == 0) |
|
{ |
|
keypoints.release(); |
|
} |
|
else |
|
{ |
|
keypoints.cols = count; |
|
} |
|
} |
|
else |
|
{ |
|
GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0)); |
|
kpLoc.colRange(0, count).copyTo(locRow, stream); |
|
keypoints.row(1).setTo(Scalar::all(0), stream); |
|
} |
|
|
|
cudaSafeCall( cudaFree(d_counter) ); |
|
} |
|
|
|
void FAST_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints) |
|
{ |
|
if (_gpu_keypoints.empty()) |
|
{ |
|
keypoints.clear(); |
|
return; |
|
} |
|
|
|
Mat h_keypoints; |
|
if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT) |
|
{ |
|
_gpu_keypoints.getGpuMat().download(h_keypoints); |
|
} |
|
else |
|
{ |
|
h_keypoints = _gpu_keypoints.getMat(); |
|
} |
|
|
|
CV_Assert( h_keypoints.rows == ROWS_COUNT ); |
|
CV_Assert( h_keypoints.elemSize() == 4 ); |
|
|
|
const int npoints = h_keypoints.cols; |
|
|
|
keypoints.resize(npoints); |
|
|
|
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW); |
|
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW); |
|
|
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]); |
|
keypoints[i] = kp; |
|
} |
|
} |
|
} |
|
|
|
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int threshold, bool nonmaxSuppression, int type, int max_npoints) |
|
{ |
|
CV_Assert( type == TYPE_9_16 ); |
|
return makePtr<FAST_Impl>(threshold, nonmaxSuppression, max_npoints); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|