Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

214 lines
7.7 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int, bool, int, int) { throw_no_cuda(); return Ptr<cv::cuda::FastFeatureDetector>(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace cuda { namespace device
{
namespace fast
{
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold, unsigned int* d_counter, cudaStream_t stream);
int nonmaxSuppression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response, unsigned int* d_counter, cudaStream_t stream);
}
}}}
namespace
{
class FAST_Impl : public cv::cuda::FastFeatureDetector
{
public:
FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints);
virtual void detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask);
virtual void detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream);
virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
virtual void setThreshold(int threshold) { threshold_ = threshold; }
virtual int getThreshold() const { return threshold_; }
virtual void setNonmaxSuppression(bool f) { nonmaxSuppression_ = f; }
virtual bool getNonmaxSuppression() const { return nonmaxSuppression_; }
virtual void setMaxNumPoints(int max_npoints) { max_npoints_ = max_npoints; }
virtual int getMaxNumPoints() const { return max_npoints_; }
virtual void setType(int type) { CV_Assert( type == TYPE_9_16 ); }
virtual int getType() const { return TYPE_9_16; }
private:
int threshold_;
bool nonmaxSuppression_;
int max_npoints_;
unsigned int* d_counter;
};
FAST_Impl::FAST_Impl(int threshold, bool nonmaxSuppression, int max_npoints) :
threshold_(threshold), nonmaxSuppression_(nonmaxSuppression), max_npoints_(max_npoints)
{
}
void FAST_Impl::detect(InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask)
{
if (_image.empty())
{
keypoints.clear();
return;
}
BufferPool pool(Stream::Null());
GpuMat d_keypoints = pool.getBuffer(ROWS_COUNT, max_npoints_, CV_32FC1);
detectAsync(_image, d_keypoints, _mask, Stream::Null());
convert(d_keypoints, keypoints);
}
void FAST_Impl::detectAsync(InputArray _image, OutputArray _keypoints, InputArray _mask, Stream& stream)
{
using namespace cv::cuda::device::fast;
cudaSafeCall( cudaMalloc(&d_counter, sizeof(unsigned int)) );
const GpuMat img = _image.getGpuMat();
const GpuMat mask = _mask.getGpuMat();
CV_Assert( img.type() == CV_8UC1 );
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()) );
BufferPool pool(stream);
GpuMat kpLoc = pool.getBuffer(1, max_npoints_, CV_16SC2);
GpuMat score;
if (nonmaxSuppression_)
{
score = pool.getBuffer(img.size(), CV_32SC1);
score.setTo(Scalar::all(0), stream);
}
int count = calcKeypoints_gpu(img, mask, kpLoc.ptr<short2>(), max_npoints_, score, threshold_, d_counter, StreamAccessor::getStream(stream));
count = std::min(count, max_npoints_);
if (count == 0)
{
_keypoints.release();
return;
}
ensureSizeIsEnough(ROWS_COUNT, count, CV_32FC1, _keypoints);
GpuMat& keypoints = _keypoints.getGpuMatRef();
if (nonmaxSuppression_)
{
count = nonmaxSuppression_gpu(kpLoc.ptr<short2>(), count, score, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW), d_counter, StreamAccessor::getStream(stream));
if (count == 0)
{
keypoints.release();
}
else
{
keypoints.cols = count;
}
}
else
{
GpuMat locRow(1, count, kpLoc.type(), keypoints.ptr(0));
kpLoc.colRange(0, count).copyTo(locRow, stream);
keypoints.row(1).setTo(Scalar::all(0), stream);
}
cudaSafeCall( cudaFree(d_counter) );
}
void FAST_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
{
if (_gpu_keypoints.empty())
{
keypoints.clear();
return;
}
Mat h_keypoints;
if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
{
_gpu_keypoints.getGpuMat().download(h_keypoints);
}
else
{
h_keypoints = _gpu_keypoints.getMat();
}
CV_Assert( h_keypoints.rows == ROWS_COUNT );
CV_Assert( h_keypoints.elemSize() == 4 );
const int npoints = h_keypoints.cols;
keypoints.resize(npoints);
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
for (int i = 0; i < npoints; ++i)
{
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
keypoints[i] = kp;
}
}
}
Ptr<cv::cuda::FastFeatureDetector> cv::cuda::FastFeatureDetector::create(int threshold, bool nonmaxSuppression, int type, int max_npoints)
{
CV_Assert( type == TYPE_9_16 );
return makePtr<FAST_Impl>(threshold, nonmaxSuppression, max_npoints);
}
#endif /* !defined (HAVE_CUDA) */