mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
6.3 KiB
194 lines
6.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/core/hal/hal.hpp" |
|
|
|
using namespace cv; |
|
|
|
namespace { |
|
|
|
static inline bool decomposeCholesky(double* A, size_t astep, int m) |
|
{ |
|
if (!hal::Cholesky64f(A, astep, m, 0, 0, 0)) |
|
return false; |
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok) |
|
{ |
|
CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3)); |
|
|
|
const double* h = H.ptr<double>(); |
|
|
|
double d1, d2; // Denominators |
|
double v1, v2; // Focal squares value candidates |
|
|
|
f1_ok = true; |
|
d1 = h[6] * h[7]; |
|
d2 = (h[7] - h[6]) * (h[7] + h[6]); |
|
v1 = -(h[0] * h[1] + h[3] * h[4]) / d1; |
|
v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2; |
|
if (v1 < v2) std::swap(v1, v2); |
|
if (v1 > 0 && v2 > 0) f1 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2); |
|
else if (v1 > 0) f1 = std::sqrt(v1); |
|
else f1_ok = false; |
|
|
|
f0_ok = true; |
|
d1 = h[0] * h[3] + h[1] * h[4]; |
|
d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4]; |
|
v1 = -h[2] * h[5] / d1; |
|
v2 = (h[5] * h[5] - h[2] * h[2]) / d2; |
|
if (v1 < v2) std::swap(v1, v2); |
|
if (v1 > 0 && v2 > 0) f0 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2); |
|
else if (v1 > 0) f0 = std::sqrt(v1); |
|
else f0_ok = false; |
|
} |
|
|
|
|
|
void estimateFocal(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches, |
|
std::vector<double> &focals) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
focals.resize(num_images); |
|
|
|
std::vector<double> all_focals; |
|
|
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
for (int j = 0; j < num_images; ++j) |
|
{ |
|
const MatchesInfo &m = pairwise_matches[i*num_images + j]; |
|
if (m.H.empty()) |
|
continue; |
|
double f0, f1; |
|
bool f0ok, f1ok; |
|
focalsFromHomography(m.H, f0, f1, f0ok, f1ok); |
|
if (f0ok && f1ok) |
|
all_focals.push_back(std::sqrt(f0 * f1)); |
|
} |
|
} |
|
|
|
if (static_cast<int>(all_focals.size()) >= num_images - 1) |
|
{ |
|
double median; |
|
|
|
std::sort(all_focals.begin(), all_focals.end()); |
|
if (all_focals.size() % 2 == 1) |
|
median = all_focals[all_focals.size() / 2]; |
|
else |
|
median = (all_focals[all_focals.size() / 2 - 1] + all_focals[all_focals.size() / 2]) * 0.5; |
|
|
|
for (int i = 0; i < num_images; ++i) |
|
focals[i] = median; |
|
} |
|
else |
|
{ |
|
LOGLN("Can't estimate focal length, will use naive approach"); |
|
double focals_sum = 0; |
|
for (int i = 0; i < num_images; ++i) |
|
focals_sum += features[i].img_size.width + features[i].img_size.height; |
|
for (int i = 0; i < num_images; ++i) |
|
focals[i] = focals_sum / num_images; |
|
} |
|
} |
|
|
|
|
|
bool calibrateRotatingCamera(const std::vector<Mat> &Hs, Mat &K) |
|
{ |
|
int m = static_cast<int>(Hs.size()); |
|
CV_Assert(m >= 1); |
|
|
|
std::vector<Mat> Hs_(m); |
|
for (int i = 0; i < m; ++i) |
|
{ |
|
CV_Assert(Hs[i].size() == Size(3, 3) && Hs[i].type() == CV_64F); |
|
Hs_[i] = Hs[i] / std::pow(determinant(Hs[i]), 1./3.); |
|
} |
|
|
|
const int idx_map[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}}; |
|
Mat_<double> A(6*m, 6); |
|
A.setTo(0); |
|
|
|
int eq_idx = 0; |
|
for (int k = 0; k < m; ++k) |
|
{ |
|
Mat_<double> H(Hs_[k]); |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
for (int j = i; j < 3; ++j, ++eq_idx) |
|
{ |
|
for (int l = 0; l < 3; ++l) |
|
{ |
|
for (int s = 0; s < 3; ++s) |
|
{ |
|
int idx = idx_map[l][s]; |
|
A(eq_idx, idx) += H(i,l) * H(j,s); |
|
} |
|
} |
|
A(eq_idx, idx_map[i][j]) -= 1; |
|
} |
|
} |
|
} |
|
|
|
Mat_<double> wcoef; |
|
SVD::solveZ(A, wcoef); |
|
|
|
Mat_<double> W(3,3); |
|
for (int i = 0; i < 3; ++i) |
|
for (int j = i; j < 3; ++j) |
|
W(i,j) = W(j,i) = wcoef(idx_map[i][j], 0) / wcoef(5,0); |
|
if (!decomposeCholesky(W.ptr<double>(), W.step, 3)) |
|
return false; |
|
W(0,1) = W(0,2) = W(1,2) = 0; |
|
K = W.t(); |
|
return true; |
|
} |
|
|
|
} // namespace detail |
|
} // namespace cv
|
|
|