mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
225 lines
8.0 KiB
225 lines
8.0 KiB
/////////////////////////////////////////////////////////////////////////////////////// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
|
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
|
|
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV. |
|
|
|
// AUTHOR: |
|
// Rahul Kavi rahulkavi[at]live[at]com |
|
// |
|
|
|
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris") |
|
|
|
// # You are free to use, change, or redistribute the code in any way you wish for |
|
// # non-commercial purposes, but please maintain the name of the original author. |
|
// # This code comes with no warranty of any kind. |
|
|
|
// # |
|
// # You are free to use, change, or redistribute the code in any way you wish for |
|
// # non-commercial purposes, but please maintain the name of the original author. |
|
// # This code comes with no warranty of any kind. |
|
|
|
// # Logistic Regression ALGORITHM |
|
|
|
|
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
|
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
|
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
error = 0.0f; |
|
float accuracy = 0.0f; |
|
Mat _p_labels_temp; |
|
Mat _o_labels_temp; |
|
_p_labels.convertTo(_p_labels_temp, CV_32S); |
|
_o_labels.convertTo(_o_labels_temp, CV_32S); |
|
|
|
CV_Assert(_p_labels_temp.total() == _o_labels_temp.total()); |
|
CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows); |
|
|
|
accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows; |
|
error = 1 - accuracy; |
|
return true; |
|
} |
|
|
|
//-------------------------------------------------------------------------------------------- |
|
|
|
class CV_LRTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_LRTest() {} |
|
protected: |
|
virtual void run( int start_from ); |
|
}; |
|
|
|
void CV_LRTest::run( int /*start_from*/ ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
// initialize variables from the popular Iris Dataset |
|
string dataFileName = ts->get_data_path() + "iris.data"; |
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0); |
|
ASSERT_FALSE(tdata.empty()) << "Could not find test data file : " << dataFileName; |
|
|
|
// run LR classifier train classifier |
|
Ptr<LogisticRegression> p = LogisticRegression::create(); |
|
p->setLearningRate(1.0); |
|
p->setIterations(10001); |
|
p->setRegularization(LogisticRegression::REG_L2); |
|
p->setTrainMethod(LogisticRegression::BATCH); |
|
p->setMiniBatchSize(10); |
|
p->train(tdata); |
|
|
|
// predict using the same data |
|
Mat responses; |
|
p->predict(tdata->getSamples(), responses); |
|
|
|
// calculate error |
|
int test_code = cvtest::TS::OK; |
|
float error = 0.0f; |
|
if(!calculateError(responses, tdata->getResponses(), error)) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" ); |
|
test_code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if(error > 0.05f) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error); |
|
test_code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
{ |
|
FileStorage s("debug.xml", FileStorage::WRITE); |
|
s << "original" << tdata->getResponses(); |
|
s << "predicted1" << responses; |
|
s << "learnt" << p->get_learnt_thetas(); |
|
s << "error" << error; |
|
s.release(); |
|
} |
|
ts->set_failed_test_info(test_code); |
|
} |
|
|
|
//-------------------------------------------------------------------------------------------- |
|
class CV_LRTest_SaveLoad : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_LRTest_SaveLoad(){} |
|
protected: |
|
virtual void run(int start_from); |
|
}; |
|
|
|
|
|
void CV_LRTest_SaveLoad::run( int /*start_from*/ ) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
int code = cvtest::TS::OK; |
|
|
|
// initialize variables from the popular Iris Dataset |
|
string dataFileName = ts->get_data_path() + "iris.data"; |
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0); |
|
ASSERT_FALSE(tdata.empty()) << "Could not find test data file : " << dataFileName; |
|
|
|
Mat responses1, responses2; |
|
Mat learnt_mat1, learnt_mat2; |
|
|
|
// train and save the classifier |
|
String filename = tempfile(".xml"); |
|
try |
|
{ |
|
// run LR classifier train classifier |
|
Ptr<LogisticRegression> lr1 = LogisticRegression::create(); |
|
lr1->setLearningRate(1.0); |
|
lr1->setIterations(10001); |
|
lr1->setRegularization(LogisticRegression::REG_L2); |
|
lr1->setTrainMethod(LogisticRegression::BATCH); |
|
lr1->setMiniBatchSize(10); |
|
lr1->train(tdata); |
|
lr1->predict(tdata->getSamples(), responses1); |
|
learnt_mat1 = lr1->get_learnt_thetas(); |
|
lr1->save(filename); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" ); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
|
|
// and load to another |
|
try |
|
{ |
|
Ptr<LogisticRegression> lr2 = Algorithm::load<LogisticRegression>(filename); |
|
lr2->predict(tdata->getSamples(), responses2); |
|
learnt_mat2 = lr2->get_learnt_thetas(); |
|
} |
|
catch(...) |
|
{ |
|
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" ); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION); |
|
} |
|
|
|
CV_Assert(responses1.rows == responses2.rows); |
|
|
|
// compare difference in learnt matrices before and after loading from disk |
|
Mat comp_learnt_mats; |
|
comp_learnt_mats = (learnt_mat1 == learnt_mat2); |
|
comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols); |
|
comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S); |
|
comp_learnt_mats = comp_learnt_mats/255; |
|
|
|
// compare difference in prediction outputs and stored inputs |
|
// check if there is any difference between computed learnt mat and retrieved mat |
|
|
|
float errorCount = 0.0; |
|
errorCount += 1 - (float)countNonZero(responses1 == responses2)/responses1.rows; |
|
errorCount += 1 - (float)sum(comp_learnt_mats)[0]/comp_learnt_mats.rows; |
|
|
|
if(errorCount>0) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errorCount=%d).\n", errorCount ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
|
|
remove( filename.c_str() ); |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
TEST(ML_LR, accuracy) { CV_LRTest test; test.safe_run(); } |
|
TEST(ML_LR, save_load) { CV_LRTest_SaveLoad test; test.safe_run(); } |
|
|
|
}} // namespace
|
|
|