Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

748 lines
27 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Test for Tensorflow models loading
*/
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
namespace opencv_test
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static std::string _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/") + filename;
}
TEST(Test_TensorFlow, read_inception)
{
Net net;
{
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
net = readNetFromTensorflow(model);
ASSERT_FALSE(net.empty());
}
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
Mat input;
resize(sample, input, Size(224, 224));
input -= Scalar::all(117); // mean sub
Mat inputBlob = blobFromImage(input);
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
std::cout << out.dims << std::endl;
}
TEST(Test_TensorFlow, inception_accuracy)
{
Net net;
{
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
net = readNetFromTensorflow(model);
ASSERT_FALSE(net.empty());
}
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
Mat inputBlob = blobFromImage(sample, 1.0, Size(224, 224), Scalar(), /*swapRB*/true);
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
normAssert(ref, out);
}
static std::string path(const std::string& file)
{
return findDataFile("dnn/tensorflow/" + file, false);
}
class Test_TensorFlow_layers : public DNNTestLayer
{
public:
void runTensorFlowNet(const std::string& prefix, bool hasText = false,
double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false)
{
std::string netPath = path(prefix + "_net.pb");
std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
std::string inpPath = path(prefix + "_in.npy");
std::string outPath = path(prefix + "_out.npy");
cv::Mat input = blobFromNPY(inpPath);
cv::Mat ref = blobFromNPY(outPath);
checkBackend(&input, &ref);
Net net;
if (memoryLoad)
{
// Load files into a memory buffers
string dataModel;
ASSERT_TRUE(readFileInMemory(netPath, dataModel));
string dataConfig;
if (hasText)
{
ASSERT_TRUE(readFileInMemory(netConfig, dataConfig));
}
net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(),
dataConfig.c_str(), dataConfig.size());
}
else
net = readNetFromTensorflow(netPath, netConfig);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(input);
cv::Mat output = net.forward();
normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
}
};
TEST_P(Test_TensorFlow_layers, conv)
{
runTensorFlowNet("single_conv");
runTensorFlowNet("atrous_conv2d_valid");
runTensorFlowNet("atrous_conv2d_same");
runTensorFlowNet("depthwise_conv2d");
runTensorFlowNet("keras_atrous_conv2d_same");
runTensorFlowNet("conv_pool_nchw");
}
TEST_P(Test_TensorFlow_layers, padding)
{
runTensorFlowNet("padding_valid");
runTensorFlowNet("spatial_padding");
runTensorFlowNet("keras_pad_concat");
}
TEST_P(Test_TensorFlow_layers, padding_same)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("Test is disabled for DLIE");
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw SkipTestException("Test is disabled for MyriadX");
#endif
// Reference output values are in range [0.0006, 2.798]
runTensorFlowNet("padding_same");
}
TEST_P(Test_TensorFlow_layers, eltwise)
{
runTensorFlowNet("eltwise_add_mul");
runTensorFlowNet("eltwise_sub");
}
TEST_P(Test_TensorFlow_layers, pad_and_concat)
{
runTensorFlowNet("pad_and_concat");
}
TEST_P(Test_TensorFlow_layers, concat_axis_1)
{
runTensorFlowNet("concat_axis_1");
}
TEST_P(Test_TensorFlow_layers, batch_norm)
{
runTensorFlowNet("batch_norm");
runTensorFlowNet("batch_norm", false, 0.0, 0.0, true);
runTensorFlowNet("fused_batch_norm");
runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true);
runTensorFlowNet("batch_norm_text", true);
runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true);
runTensorFlowNet("unfused_batch_norm");
runTensorFlowNet("fused_batch_norm_no_gamma");
runTensorFlowNet("unfused_batch_norm_no_gamma");
runTensorFlowNet("mvn_batch_norm");
runTensorFlowNet("mvn_batch_norm_1x1");
}
TEST_P(Test_TensorFlow_layers, slim_batch_norm)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("Test is disabled for DLIE");
// Output values range: [-40.0597, 207.827]
double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.041 : default_l1;
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.33 : default_lInf;
runTensorFlowNet("slim_batch_norm", false, l1, lInf);
}
TEST_P(Test_TensorFlow_layers, pooling)
{
runTensorFlowNet("max_pool_even");
runTensorFlowNet("max_pool_odd_valid");
runTensorFlowNet("max_pool_odd_same");
runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions.
}
// TODO: fix tests and replace to pooling
TEST_P(Test_TensorFlow_layers, ave_pool_same)
{
// Reference output values are in range [-0.519531, 0.112976]
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw SkipTestException("Test is disabled for MyriadX");
#endif
runTensorFlowNet("ave_pool_same");
}
TEST_P(Test_TensorFlow_layers, deconvolution)
{
runTensorFlowNet("deconvolution");
runTensorFlowNet("deconvolution_same");
runTensorFlowNet("deconvolution_stride_2_same");
runTensorFlowNet("deconvolution_adj_pad_valid");
runTensorFlowNet("deconvolution_adj_pad_same");
runTensorFlowNet("keras_deconv_valid");
runTensorFlowNet("keras_deconv_same");
}
TEST_P(Test_TensorFlow_layers, matmul)
{
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("");
runTensorFlowNet("matmul");
runTensorFlowNet("nhwc_transpose_reshape_matmul");
// Reference output values are in range [-5.688, 4.484]
double l1 = target == DNN_TARGET_MYRIAD ? 6.1e-3 : default_l1;
runTensorFlowNet("nhwc_reshape_matmul", false, l1);
}
TEST_P(Test_TensorFlow_layers, reshape)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("");
runTensorFlowNet("shift_reshape_no_reorder");
runTensorFlowNet("reshape_no_reorder");
runTensorFlowNet("reshape_reduce");
runTensorFlowNet("reshape_as_shape");
}
TEST_P(Test_TensorFlow_layers, flatten)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("Test is disabled for DLIE");
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
)
throw SkipTestException("Test is disabled for Myriad2");
#endif
runTensorFlowNet("flatten", true);
}
TEST_P(Test_TensorFlow_layers, unfused_flatten)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("Test is disabled for DLIE");
#endif
runTensorFlowNet("unfused_flatten");
runTensorFlowNet("unfused_flatten_unknown_batch");
}
TEST_P(Test_TensorFlow_layers, leaky_relu)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
throw SkipTestException("Test is disabled for DLIE/OCL target (OpenVINO 2018R5)");
#endif
runTensorFlowNet("leaky_relu_order1");
runTensorFlowNet("leaky_relu_order2");
runTensorFlowNet("leaky_relu_order3");
}
TEST_P(Test_TensorFlow_layers, l2_normalize)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw SkipTestException("Test is disabled for MyriadX");
#endif
runTensorFlowNet("l2_normalize");
}
// TODO: fix it and add to l2_normalize
TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE
&& (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
)
throw SkipTestException("Test is disabled for DLIE for OpenCL targets");
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
throw SkipTestException("Test is disabled for Myriad targets");
#endif
runTensorFlowNet("l2_normalize_3d");
}
class Test_TensorFlow_nets : public DNNTestLayer {};
TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
{
checkBackend();
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);
std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false);
std::string imgPath = findDataFile("dnn/street.png", false);
Mat inp;
resize(imread(imgPath), inp, Size(300, 300));
inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true);
std::vector<String> outNames(3);
outNames[0] = "concat";
outNames[1] = "concat_1";
outNames[2] = "detection_out";
std::vector<Mat> refs(outNames.size());
for (int i = 0; i < outNames.size(); ++i)
{
std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false);
refs[i] = blobFromNPY(path);
}
Net net = readNetFromTensorflow(netPath, netConfig);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(inp);
std::vector<Mat> output;
net.forward(output, outNames);
normAssert(refs[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
normAssert(refs[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
normAssertDetections(refs[2], output[2], "", 0.2);
}
TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw SkipTestException("Test is disabled for MyriadX");
#endif
checkBackend();
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/street.png", false));
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0097 : default_l1;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : default_lInf;
normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
}
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
{
checkBackend();
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw SkipTestException("Test is disabled for MyriadX");
#endif
std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false);
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/dog416.png", false));
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(blob);
Mat out = net.forward();
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy"));
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7e-3 : 1.5e-5;
float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3;
normAssertDetections(ref, out, "", 0.3, scoreDiff, iouDiff);
}
TEST_P(Test_TensorFlow_nets, Faster_RCNN)
{
static std::string names[] = {"faster_rcnn_inception_v2_coco_2018_01_28",
"faster_rcnn_resnet50_coco_2018_01_28"};
checkBackend();
if ((backend == DNN_BACKEND_INFERENCE_ENGINE) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
double scoresDiff = backend == DNN_BACKEND_INFERENCE_ENGINE ? 2.9e-5 : 1e-5;
for (int i = 0; i < 2; ++i)
{
std::string proto = findDataFile("dnn/" + names[i] + ".pbtxt", false);
std::string model = findDataFile("dnn/" + names[i] + ".pb", false);
Net net = readNetFromTensorflow(model, proto);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat img = imread(findDataFile("dnn/dog416.png", false));
Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false);
net.setInput(blob);
Mat out = net.forward();
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + names[i] + ".detection_out.npy"));
normAssertDetections(ref, out, names[i].c_str(), 0.3, scoresDiff);
}
}
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("Test is disabled for DLIE OpenCL targets in OpenVINO 2018R5");
#endif
checkBackend();
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt", false);
std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/dog416.png", false));
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy", false));
Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(blob);
Mat out = net.forward();
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.048 : 1.1e-5;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.058 : default_lInf;
normAssertDetections(ref, out, "", 0.45, scoreDiff, iouDiff);
}
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
{
checkBackend();
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false);
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
// References are from test for Caffe model.
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 3.4e-3;
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.024 : 1e-2;
normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff);
}
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
// feed_dict={'input_images:0': inp})
// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
// np.save('east_text_detection.scores.npy', scores)
// np.save('east_text_detection.geometry.npy', geometry)
TEST_P(Test_TensorFlow_nets, EAST_text_detection)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
throw SkipTestException("Test is disabled for Myriad targets");
#endif
checkBackend();
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Mat img = imread(imgPath);
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
net.setInput(inp);
std::vector<Mat> outs;
std::vector<String> outNames(2);
outNames[0] = "feature_fusion/Conv_7/Sigmoid";
outNames[1] = "feature_fusion/concat_3";
net.forward(outs, outNames);
Mat scores = outs[0];
Mat geometry = outs[1];
// Scores are in range [0, 1]. Geometry values are in range [-0.23, 290]
double l1_scores = default_l1, lInf_scores = default_lInf;
double l1_geometry = default_l1, lInf_geometry = default_lInf;
if (target == DNN_TARGET_OPENCL_FP16)
{
lInf_scores = backend == DNN_BACKEND_INFERENCE_ENGINE ? 0.16 : 0.11;
l1_geometry = 0.28; lInf_geometry = 5.94;
}
else if (target == DNN_TARGET_MYRIAD)
{
lInf_scores = 0.41;
l1_geometry = 0.28; lInf_geometry = 5.94;
}
else
{
l1_geometry = 1e-4, lInf_geometry = 3e-3;
}
normAssert(scores, blobFromNPY(refScoresPath), "scores", l1_scores, lInf_scores);
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", l1_geometry, lInf_geometry);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets());
TEST_P(Test_TensorFlow_layers, fp16_weights)
{
float l1 = 0.00078;
float lInf = 0.012;
runTensorFlowNet("fp16_single_conv", false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf);
runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf);
runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf);
runTensorFlowNet("fp16_padding_valid", false, l1, lInf);
// Reference output values are in range [0.0889, 1.651]
runTensorFlowNet("fp16_max_pool_even", false, (target == DNN_TARGET_MYRIAD) ? 0.003 : l1, lInf);
if (target == DNN_TARGET_MYRIAD) {
l1 = 0.0041;
lInf = 0.024;
}
// Reference output values are in range [0, 10.75]
runTensorFlowNet("fp16_deconvolution", false, l1, lInf);
// Reference output values are in range [0.418, 2.297]
runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf);
}
TEST_P(Test_TensorFlow_layers, fp16_padding_same)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("Test is disabled for DLIE");
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
throw SkipTestException("Test is disabled for MyriadX");
#endif
// Reference output values are in range [-3.504, -0.002]
runTensorFlowNet("fp16_padding_same", false, 6e-4, 4e-3);
}
TEST_P(Test_TensorFlow_layers, defun)
{
runTensorFlowNet("defun_dropout");
}
TEST_P(Test_TensorFlow_layers, quantized)
{
runTensorFlowNet("uint8_single_conv");
}
TEST_P(Test_TensorFlow_layers, lstm)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
runTensorFlowNet("lstm", true);
runTensorFlowNet("lstm", true, 0.0, 0.0, true);
}
TEST_P(Test_TensorFlow_layers, split)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
throw SkipTestException("");
runTensorFlowNet("split_equals");
}
TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor)
{
runTensorFlowNet("resize_nearest_neighbor");
runTensorFlowNet("keras_upsampling2d");
}
TEST_P(Test_TensorFlow_layers, slice)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
(target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
runTensorFlowNet("slice_4d");
}
TEST_P(Test_TensorFlow_layers, softmax)
{
runTensorFlowNet("keras_softmax");
runTensorFlowNet("slim_softmax");
}
TEST_P(Test_TensorFlow_layers, relu6)
{
runTensorFlowNet("keras_relu6");
runTensorFlowNet("keras_relu6", /*hasText*/ true);
}
TEST_P(Test_TensorFlow_layers, keras_mobilenet_head)
{
runTensorFlowNet("keras_mobilenet_head");
}
TEST_P(Test_TensorFlow_layers, resize_bilinear)
{
runTensorFlowNet("resize_bilinear");
runTensorFlowNet("resize_bilinear_factor");
}
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, dnnBackendsAndTargets());
TEST(Test_TensorFlow, two_inputs)
{
Net net = readNet(path("two_inputs_net.pbtxt"));
net.setPreferableBackend(DNN_BACKEND_OPENCV);
Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1);
randu(firstInput, -1, 1);
randu(secondInput, -1, 1);
net.setInput(firstInput, "first_input");
net.setInput(secondInput, "second_input");
Mat out = net.forward();
normAssert(out, firstInput + secondInput);
}
TEST(Test_TensorFlow, Mask_RCNN)
{
std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt", false);
std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/street.png", false));
Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy"));
Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy"));
Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setInput(blob);
// Mask-RCNN predicts bounding boxes and segmentation masks.
std::vector<String> outNames(2);
outNames[0] = "detection_out_final";
outNames[1] = "detection_masks";
std::vector<Mat> outs;
net.forward(outs, outNames);
Mat outDetections = outs[0];
Mat outMasks = outs[1];
normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5);
// Output size of masks is NxCxHxW where
// N - number of detected boxes
// C - number of classes (excluding background)
// HxW - segmentation shape
const int numDetections = outDetections.size[2];
int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]};
Mat masks(4, &masksSize[0], CV_32F);
std::vector<cv::Range> srcRanges(4, cv::Range::all());
std::vector<cv::Range> dstRanges(4, cv::Range::all());
outDetections = outDetections.reshape(1, outDetections.total() / 7);
for (int i = 0; i < numDetections; ++i)
{
// Get a class id for this bounding box and copy mask only for that class.
int classId = static_cast<int>(outDetections.at<float>(i, 1));
srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1);
srcRanges[1] = cv::Range(classId, classId + 1);
outMasks(srcRanges).copyTo(masks(dstRanges));
}
cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()};
normAssert(masks, refMasks(&topRefMasks[0]));
}
}