mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
405 lines
12 KiB
405 lines
12 KiB
#include "perf_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
////////////////////////////////////////////////////// |
|
// BroxOpticalFlow |
|
|
|
GPU_PERF_TEST_1(BroxOpticalFlow, cv::gpu::DeviceInfo) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GetParam(); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0_host.empty()); |
|
|
|
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1_host.empty()); |
|
|
|
frame0_host.convertTo(frame0_host, CV_32FC1, 1.0 / 255.0); |
|
frame1_host.convertTo(frame1_host, CV_32FC1, 1.0 / 255.0); |
|
|
|
cv::gpu::GpuMat frame0(frame0_host); |
|
cv::gpu::GpuMat frame1(frame1_host); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
d_flow(frame0, frame1, u, v); |
|
|
|
declare.time(10); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_flow(frame0, frame1, u, v); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, BroxOpticalFlow, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////// |
|
// InterpolateFrames |
|
|
|
GPU_PERF_TEST_1(InterpolateFrames, cv::gpu::DeviceInfo) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GetParam(); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::Mat frame0_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0_host.empty()); |
|
|
|
cv::Mat frame1_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1_host.empty()); |
|
|
|
frame0_host.convertTo(frame0_host, CV_32FC1, 1.0 / 255.0); |
|
frame1_host.convertTo(frame1_host, CV_32FC1, 1.0 / 255.0); |
|
|
|
cv::gpu::GpuMat frame0(frame0_host); |
|
cv::gpu::GpuMat frame1(frame1_host); |
|
cv::gpu::GpuMat fu, fv; |
|
cv::gpu::GpuMat bu, bv; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
d_flow(frame0, frame1, fu, fv); |
|
d_flow(frame1, frame0, bu, bv); |
|
|
|
cv::gpu::GpuMat newFrame; |
|
cv::gpu::GpuMat buf; |
|
|
|
cv::gpu::interpolateFrames(frame0, frame1, fu, fv, bu, bv, 0.5f, newFrame, buf); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::interpolateFrames(frame0, frame1, fu, fv, bu, bv, 0.5f, newFrame, buf); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, InterpolateFrames, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////// |
|
// CreateOpticalFlowNeedleMap |
|
|
|
GPU_PERF_TEST_1(CreateOpticalFlowNeedleMap, cv::gpu::DeviceInfo) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GetParam(); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::Mat frame0_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0_host.empty()); |
|
|
|
cv::Mat frame1_host = readImage("gpu/perf/aloeR.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1_host.empty()); |
|
|
|
frame0_host.convertTo(frame0_host, CV_32FC1, 1.0 / 255.0); |
|
frame1_host.convertTo(frame1_host, CV_32FC1, 1.0 / 255.0); |
|
|
|
cv::gpu::GpuMat frame0(frame0_host); |
|
cv::gpu::GpuMat frame1(frame1_host); |
|
cv::gpu::GpuMat u, v; |
|
|
|
cv::gpu::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/, |
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/); |
|
|
|
d_flow(frame0, frame1, u, v); |
|
|
|
cv::gpu::GpuMat vertex, colors; |
|
|
|
cv::gpu::createOpticalFlowNeedleMap(u, v, vertex, colors); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::createOpticalFlowNeedleMap(u, v, vertex, colors); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, CreateOpticalFlowNeedleMap, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////// |
|
// GoodFeaturesToTrack |
|
|
|
IMPLEMENT_PARAM_CLASS(MinDistance, double) |
|
|
|
GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
double minDistance = GET_PARAM(1); |
|
|
|
cv::Mat image_host = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image_host.empty()); |
|
|
|
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(8000, 0.01, minDistance); |
|
|
|
cv::gpu::GpuMat image(image_host); |
|
cv::gpu::GpuMat pts; |
|
|
|
detector(image, pts); |
|
|
|
TEST_CYCLE() |
|
{ |
|
detector(image, pts); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(MinDistance(0.0), MinDistance(3.0)))); |
|
|
|
////////////////////////////////////////////////////// |
|
// PyrLKOpticalFlowSparse |
|
|
|
IMPLEMENT_PARAM_CLASS(GraySource, bool) |
|
IMPLEMENT_PARAM_CLASS(Points, int) |
|
IMPLEMENT_PARAM_CLASS(WinSize, int) |
|
|
|
GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, GraySource, Points, WinSize) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
bool useGray = GET_PARAM(1); |
|
int points = GET_PARAM(2); |
|
int win_size = GET_PARAM(3); |
|
|
|
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame0_host.empty()); |
|
|
|
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
ASSERT_FALSE(frame1_host.empty()); |
|
|
|
cv::Mat gray_frame; |
|
if (useGray) |
|
gray_frame = frame0_host; |
|
else |
|
cv::cvtColor(frame0_host, gray_frame, cv::COLOR_BGR2GRAY); |
|
|
|
cv::gpu::GpuMat pts; |
|
|
|
cv::gpu::GoodFeaturesToTrackDetector_GPU detector(points, 0.01, 0.0); |
|
detector(cv::gpu::GpuMat(gray_frame), pts); |
|
|
|
cv::gpu::PyrLKOpticalFlow pyrLK; |
|
pyrLK.winSize = cv::Size(win_size, win_size); |
|
|
|
cv::gpu::GpuMat frame0(frame0_host); |
|
cv::gpu::GpuMat frame1(frame1_host); |
|
cv::gpu::GpuMat nextPts; |
|
cv::gpu::GpuMat status; |
|
|
|
pyrLK.sparse(frame0, frame1, pts, nextPts, status); |
|
|
|
TEST_CYCLE() |
|
{ |
|
pyrLK.sparse(frame0, frame1, pts, nextPts, status); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(GraySource(true), GraySource(false)), |
|
testing::Values(Points(1000), Points(2000), Points(4000), Points(8000)), |
|
testing::Values(WinSize(17), WinSize(21)))); |
|
|
|
////////////////////////////////////////////////////// |
|
// PyrLKOpticalFlowDense |
|
|
|
IMPLEMENT_PARAM_CLASS(Levels, int) |
|
IMPLEMENT_PARAM_CLASS(Iters, int) |
|
|
|
GPU_PERF_TEST(PyrLKOpticalFlowDense, cv::gpu::DeviceInfo, WinSize, Levels, Iters) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
int winSize = GET_PARAM(1); |
|
int levels = GET_PARAM(2); |
|
int iters = GET_PARAM(3); |
|
|
|
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0_host.empty()); |
|
|
|
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1_host.empty()); |
|
|
|
cv::gpu::GpuMat frame0(frame0_host); |
|
cv::gpu::GpuMat frame1(frame1_host); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::PyrLKOpticalFlow pyrLK; |
|
|
|
pyrLK.winSize = cv::Size(winSize, winSize); |
|
pyrLK.maxLevel = levels - 1; |
|
pyrLK.iters = iters; |
|
|
|
pyrLK.dense(frame0, frame1, u, v); |
|
|
|
declare.time(30); |
|
|
|
TEST_CYCLE() |
|
{ |
|
pyrLK.dense(frame0, frame1, u, v); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowDense, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(WinSize(3), WinSize(5), WinSize(7), WinSize(9), WinSize(13), WinSize(17), WinSize(21)), |
|
testing::Values(Levels(1), Levels(2), Levels(3)), |
|
testing::Values(Iters(1), Iters(10)))); |
|
|
|
////////////////////////////////////////////////////// |
|
// FarnebackOpticalFlowTest |
|
|
|
GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GetParam(); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
cv::Mat frame0_host = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame0_host.empty()); |
|
|
|
cv::Mat frame1_host = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(frame1_host.empty()); |
|
|
|
cv::gpu::GpuMat frame0(frame0_host); |
|
cv::gpu::GpuMat frame1(frame1_host); |
|
cv::gpu::GpuMat u; |
|
cv::gpu::GpuMat v; |
|
|
|
cv::gpu::FarnebackOpticalFlow farneback; |
|
|
|
farneback(frame0, frame1, u, v); |
|
|
|
declare.time(10); |
|
|
|
TEST_CYCLE() |
|
{ |
|
farneback(frame0, frame1, u, v); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, ALL_DEVICES); |
|
|
|
////////////////////////////////////////////////////// |
|
// FGDStatModel |
|
|
|
GPU_PERF_TEST(FGDStatModel, cv::gpu::DeviceInfo, std::string) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
ASSERT_TRUE(cap.isOpened()); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
cv::gpu::GpuMat d_frame(frame); |
|
cv::gpu::FGDStatModel d_model(4); |
|
d_model.create(d_frame); |
|
|
|
declare.time(10); |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
cap >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
d_frame.upload(frame); |
|
|
|
startTimer(); next(); |
|
d_model.update(d_frame); |
|
stopTimer(); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FGDStatModel, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); |
|
|
|
////////////////////////////////////////////////////// |
|
// VideoWriter |
|
|
|
#ifdef WIN32 |
|
|
|
GPU_PERF_TEST(VideoWriter, cv::gpu::DeviceInfo, std::string) |
|
{ |
|
const double FPS = 25.0; |
|
|
|
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
|
std::string outputFile = inputFile.substr(0, inputFile.find('.')) + "_test.avi"; |
|
|
|
cv::VideoCapture reader(inputFile); |
|
ASSERT_TRUE( reader.isOpened() ); |
|
|
|
cv::gpu::VideoWriter_GPU d_writer; |
|
|
|
cv::Mat frame; |
|
cv::gpu::GpuMat d_frame; |
|
|
|
declare.time(10); |
|
|
|
for (int i = 0; i < 10; ++i) |
|
{ |
|
reader >> frame; |
|
ASSERT_FALSE(frame.empty()); |
|
|
|
d_frame.upload(frame); |
|
|
|
if (!d_writer.isOpened()) |
|
d_writer.open(outputFile, frame.size(), FPS); |
|
|
|
startTimer(); next(); |
|
d_writer.write(d_frame); |
|
stopTimer(); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, VideoWriter, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); |
|
|
|
#endif // WIN32 |
|
|
|
////////////////////////////////////////////////////// |
|
// VideoReader |
|
|
|
GPU_PERF_TEST(VideoReader, cv::gpu::DeviceInfo, std::string) |
|
{ |
|
cv::gpu::DeviceInfo devInfo = GET_PARAM(0); |
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); |
|
|
|
cv::gpu::VideoReader_GPU reader(inputFile); |
|
ASSERT_TRUE( reader.isOpened() ); |
|
|
|
cv::gpu::GpuMat frame; |
|
|
|
reader.read(frame); |
|
|
|
declare.time(20); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
reader.read(frame); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Video, VideoReader, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); |
|
|
|
#endif
|
|
|