mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
15 KiB
392 lines
15 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
/*********************************************************************** |
|
* Author: Vincent Rabaud |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_LSH_INDEX_H_ |
|
#define OPENCV_FLANN_LSH_INDEX_H_ |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cstring> |
|
#include <map> |
|
#include <vector> |
|
|
|
#include "general.h" |
|
#include "nn_index.h" |
|
#include "matrix.h" |
|
#include "result_set.h" |
|
#include "heap.h" |
|
#include "lsh_table.h" |
|
#include "allocator.h" |
|
#include "random.h" |
|
#include "saving.h" |
|
|
|
namespace cvflann |
|
{ |
|
|
|
struct LshIndexParams : public IndexParams |
|
{ |
|
LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2) |
|
{ |
|
(* this)["algorithm"] = FLANN_INDEX_LSH; |
|
// The number of hash tables to use |
|
(*this)["table_number"] = table_number; |
|
// The length of the key in the hash tables |
|
(*this)["key_size"] = key_size; |
|
// Number of levels to use in multi-probe (0 for standard LSH) |
|
(*this)["multi_probe_level"] = multi_probe_level; |
|
} |
|
}; |
|
|
|
/** |
|
* Randomized kd-tree index |
|
* |
|
* Contains the k-d trees and other information for indexing a set of points |
|
* for nearest-neighbor matching. |
|
*/ |
|
template<typename Distance> |
|
class LshIndex : public NNIndex<Distance> |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
/** Constructor |
|
* @param input_data dataset with the input features |
|
* @param params parameters passed to the LSH algorithm |
|
* @param d the distance used |
|
*/ |
|
LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(), |
|
Distance d = Distance()) : |
|
dataset_(input_data), index_params_(params), distance_(d) |
|
{ |
|
// cv::flann::IndexParams sets integer params as 'int', so it is used with get_param |
|
// in place of 'unsigned int' |
|
table_number_ = (unsigned int)get_param<int>(index_params_,"table_number",12); |
|
key_size_ = (unsigned int)get_param<int>(index_params_,"key_size",20); |
|
multi_probe_level_ = (unsigned int)get_param<int>(index_params_,"multi_probe_level",2); |
|
|
|
feature_size_ = (unsigned)dataset_.cols; |
|
fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_); |
|
} |
|
|
|
|
|
LshIndex(const LshIndex&); |
|
LshIndex& operator=(const LshIndex&); |
|
|
|
/** |
|
* Builds the index |
|
*/ |
|
void buildIndex() |
|
{ |
|
tables_.resize(table_number_); |
|
for (unsigned int i = 0; i < table_number_; ++i) { |
|
lsh::LshTable<ElementType>& table = tables_[i]; |
|
table = lsh::LshTable<ElementType>(feature_size_, key_size_); |
|
|
|
// Add the features to the table |
|
table.add(dataset_); |
|
} |
|
} |
|
|
|
flann_algorithm_t getType() const |
|
{ |
|
return FLANN_INDEX_LSH; |
|
} |
|
|
|
|
|
void saveIndex(FILE* stream) |
|
{ |
|
save_value(stream,table_number_); |
|
save_value(stream,key_size_); |
|
save_value(stream,multi_probe_level_); |
|
save_value(stream, dataset_); |
|
} |
|
|
|
void loadIndex(FILE* stream) |
|
{ |
|
load_value(stream, table_number_); |
|
load_value(stream, key_size_); |
|
load_value(stream, multi_probe_level_); |
|
load_value(stream, dataset_); |
|
// Building the index is so fast we can afford not storing it |
|
buildIndex(); |
|
|
|
index_params_["algorithm"] = getType(); |
|
index_params_["table_number"] = table_number_; |
|
index_params_["key_size"] = key_size_; |
|
index_params_["multi_probe_level"] = multi_probe_level_; |
|
} |
|
|
|
/** |
|
* Returns size of index. |
|
*/ |
|
size_t size() const |
|
{ |
|
return dataset_.rows; |
|
} |
|
|
|
/** |
|
* Returns the length of an index feature. |
|
*/ |
|
size_t veclen() const |
|
{ |
|
return feature_size_; |
|
} |
|
|
|
/** |
|
* Computes the index memory usage |
|
* Returns: memory used by the index |
|
*/ |
|
int usedMemory() const |
|
{ |
|
return (int)(dataset_.rows * sizeof(int)); |
|
} |
|
|
|
|
|
IndexParams getParameters() const |
|
{ |
|
return index_params_; |
|
} |
|
|
|
/** |
|
* \brief Perform k-nearest neighbor search |
|
* \param[in] queries The query points for which to find the nearest neighbors |
|
* \param[out] indices The indices of the nearest neighbors found |
|
* \param[out] dists Distances to the nearest neighbors found |
|
* \param[in] knn Number of nearest neighbors to return |
|
* \param[in] params Search parameters |
|
*/ |
|
virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) |
|
{ |
|
assert(queries.cols == veclen()); |
|
assert(indices.rows >= queries.rows); |
|
assert(dists.rows >= queries.rows); |
|
assert(int(indices.cols) >= knn); |
|
assert(int(dists.cols) >= knn); |
|
|
|
|
|
KNNUniqueResultSet<DistanceType> resultSet(knn); |
|
for (size_t i = 0; i < queries.rows; i++) { |
|
resultSet.clear(); |
|
std::fill_n(indices[i], knn, -1); |
|
std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max()); |
|
findNeighbors(resultSet, queries[i], params); |
|
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); |
|
else resultSet.copy(indices[i], dists[i], knn); |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Find set of nearest neighbors to vec. Their indices are stored inside |
|
* the result object. |
|
* |
|
* Params: |
|
* result = the result object in which the indices of the nearest-neighbors are stored |
|
* vec = the vector for which to search the nearest neighbors |
|
* maxCheck = the maximum number of restarts (in a best-bin-first manner) |
|
*/ |
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) |
|
{ |
|
getNeighbors(vec, result); |
|
} |
|
|
|
private: |
|
/** Defines the comparator on score and index |
|
*/ |
|
typedef std::pair<float, unsigned int> ScoreIndexPair; |
|
struct SortScoreIndexPairOnSecond |
|
{ |
|
bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const |
|
{ |
|
return left.second < right.second; |
|
} |
|
}; |
|
|
|
/** Fills the different xor masks to use when getting the neighbors in multi-probe LSH |
|
* @param key the key we build neighbors from |
|
* @param lowest_index the lowest index of the bit set |
|
* @param level the multi-probe level we are at |
|
* @param xor_masks all the xor mask |
|
*/ |
|
void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level, |
|
std::vector<lsh::BucketKey>& xor_masks) |
|
{ |
|
xor_masks.push_back(key); |
|
if (level == 0) return; |
|
for (int index = lowest_index - 1; index >= 0; --index) { |
|
// Create a new key |
|
lsh::BucketKey new_key = key | (1 << index); |
|
fill_xor_mask(new_key, index, level - 1, xor_masks); |
|
} |
|
} |
|
|
|
/** Performs the approximate nearest-neighbor search. |
|
* @param vec the feature to analyze |
|
* @param do_radius flag indicating if we check the radius too |
|
* @param radius the radius if it is a radius search |
|
* @param do_k flag indicating if we limit the number of nn |
|
* @param k_nn the number of nearest neighbors |
|
* @param checked_average used for debugging |
|
*/ |
|
void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn, |
|
float& /*checked_average*/) |
|
{ |
|
static std::vector<ScoreIndexPair> score_index_heap; |
|
|
|
if (do_k) { |
|
unsigned int worst_score = std::numeric_limits<unsigned int>::max(); |
|
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); |
|
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); |
|
for (; table != table_end; ++table) { |
|
size_t key = table->getKey(vec); |
|
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); |
|
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); |
|
for (; xor_mask != xor_mask_end; ++xor_mask) { |
|
size_t sub_key = key ^ (*xor_mask); |
|
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); |
|
if (bucket == 0) continue; |
|
|
|
// Go over each descriptor index |
|
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); |
|
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); |
|
DistanceType hamming_distance; |
|
|
|
// Process the rest of the candidates |
|
for (; training_index < last_training_index; ++training_index) { |
|
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); |
|
|
|
if (hamming_distance < worst_score) { |
|
// Insert the new element |
|
score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); |
|
std::push_heap(score_index_heap.begin(), score_index_heap.end()); |
|
|
|
if (score_index_heap.size() > (unsigned int)k_nn) { |
|
// Remove the highest distance value as we have too many elements |
|
std::pop_heap(score_index_heap.begin(), score_index_heap.end()); |
|
score_index_heap.pop_back(); |
|
// Keep track of the worst score |
|
worst_score = score_index_heap.front().first; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
else { |
|
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); |
|
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); |
|
for (; table != table_end; ++table) { |
|
size_t key = table->getKey(vec); |
|
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); |
|
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); |
|
for (; xor_mask != xor_mask_end; ++xor_mask) { |
|
size_t sub_key = key ^ (*xor_mask); |
|
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); |
|
if (bucket == 0) continue; |
|
|
|
// Go over each descriptor index |
|
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); |
|
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); |
|
DistanceType hamming_distance; |
|
|
|
// Process the rest of the candidates |
|
for (; training_index < last_training_index; ++training_index) { |
|
// Compute the Hamming distance |
|
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); |
|
if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** Performs the approximate nearest-neighbor search. |
|
* This is a slower version than the above as it uses the ResultSet |
|
* @param vec the feature to analyze |
|
*/ |
|
void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result) |
|
{ |
|
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin(); |
|
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end(); |
|
for (; table != table_end; ++table) { |
|
size_t key = table->getKey(vec); |
|
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin(); |
|
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end(); |
|
for (; xor_mask != xor_mask_end; ++xor_mask) { |
|
size_t sub_key = key ^ (*xor_mask); |
|
const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key); |
|
if (bucket == 0) continue; |
|
|
|
// Go over each descriptor index |
|
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin(); |
|
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end(); |
|
DistanceType hamming_distance; |
|
|
|
// Process the rest of the candidates |
|
for (; training_index < last_training_index; ++training_index) { |
|
// Compute the Hamming distance |
|
hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols); |
|
result.addPoint(hamming_distance, *training_index); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** The different hash tables */ |
|
std::vector<lsh::LshTable<ElementType> > tables_; |
|
|
|
/** The data the LSH tables where built from */ |
|
Matrix<ElementType> dataset_; |
|
|
|
/** The size of the features (as ElementType[]) */ |
|
unsigned int feature_size_; |
|
|
|
IndexParams index_params_; |
|
|
|
/** table number */ |
|
unsigned int table_number_; |
|
/** key size */ |
|
unsigned int key_size_; |
|
/** How far should we look for neighbors in multi-probe LSH */ |
|
unsigned int multi_probe_level_; |
|
|
|
/** The XOR masks to apply to a key to get the neighboring buckets */ |
|
std::vector<lsh::BucketKey> xor_masks_; |
|
|
|
Distance distance_; |
|
}; |
|
} |
|
|
|
#endif //OPENCV_FLANN_LSH_INDEX_H_
|
|
|