mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
6.8 KiB
171 lines
6.8 KiB
/* |
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>. |
|
* Released to public domain under terms of the BSD Simplified license. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of the organization nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* See <http://www.opensource.org/licenses/bsd-license> |
|
*/ |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/contrib/contrib.hpp" |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <sstream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static Mat toGrayscale(InputArray _src) { |
|
Mat src = _src.getMat(); |
|
// only allow one channel |
|
if(src.channels() != 1) { |
|
CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported"); |
|
} |
|
// create and return normalized image |
|
Mat dst; |
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); |
|
return dst; |
|
} |
|
|
|
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, std::map<int, string>& labelsInfo, char separator = ';') { |
|
std::ifstream file(filename.c_str(), ifstream::in); |
|
if (!file) { |
|
string error_message = "No valid input file was given, please check the given filename."; |
|
CV_Error(CV_StsBadArg, error_message); |
|
} |
|
string line, path, classlabel, info; |
|
while (getline(file, line)) { |
|
stringstream liness(line); |
|
getline(liness, path, separator); |
|
getline(liness, classlabel, separator); |
|
getline(liness, info, separator); |
|
if(!path.empty() && !classlabel.empty()) { |
|
images.push_back(imread(path, 0)); |
|
labels.push_back(atoi(classlabel.c_str())); |
|
if(!info.empty()) |
|
labelsInfo.insert(std::make_pair(labels.back(), info)); |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, const char *argv[]) { |
|
// Check for valid command line arguments, print usage |
|
// if no arguments were given. |
|
if (argc != 2) { |
|
cout << "usage: " << argv[0] << " <csv.ext>" << endl; |
|
exit(1); |
|
} |
|
// Get the path to your CSV. |
|
string fn_csv = string(argv[1]); |
|
// These vectors hold the images and corresponding labels. |
|
vector<Mat> images; |
|
vector<int> labels; |
|
std::map<int, string> labelsInfo; |
|
// Read in the data. This can fail if no valid |
|
// input filename is given. |
|
try { |
|
read_csv(fn_csv, images, labels, labelsInfo); |
|
} catch (cv::Exception& e) { |
|
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl; |
|
// nothing more we can do |
|
exit(1); |
|
} |
|
|
|
// Quit if there are not enough images for this demo. |
|
if(images.size() <= 1) { |
|
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; |
|
CV_Error(CV_StsError, error_message); |
|
} |
|
// Get the height from the first image. We'll need this |
|
// later in code to reshape the images to their original |
|
// size: |
|
int height = images[0].rows; |
|
// The following lines simply get the last images from |
|
// your dataset and remove it from the vector. This is |
|
// done, so that the training data (which we learn the |
|
// cv::FaceRecognizer on) and the test data we test |
|
// the model with, do not overlap. |
|
Mat testSample = images[images.size() - 1]; |
|
int testLabel = labels[labels.size() - 1]; |
|
images.pop_back(); |
|
labels.pop_back(); |
|
// The following lines create an Eigenfaces model for |
|
// face recognition and train it with the images and |
|
// labels read from the given CSV file. |
|
// This here is a full PCA, if you just want to keep |
|
// 10 principal components (read Eigenfaces), then call |
|
// the factory method like this: |
|
// |
|
// cv::createEigenFaceRecognizer(10); |
|
// |
|
// If you want to create a FaceRecognizer with a |
|
// confidennce threshold, call it with: |
|
// |
|
// cv::createEigenFaceRecognizer(10, 123.0); |
|
// |
|
Ptr<FaceRecognizer> model = createEigenFaceRecognizer(); |
|
model->setLabelsInfo(labelsInfo); |
|
model->train(images, labels); |
|
|
|
// The following line predicts the label of a given |
|
// test image: |
|
int predictedLabel = model->predict(testSample); |
|
// |
|
// To get the confidence of a prediction call the model with: |
|
// |
|
// int predictedLabel = -1; |
|
// double confidence = 0.0; |
|
// model->predict(testSample, predictedLabel, confidence); |
|
// |
|
string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel); |
|
cout << result_message << endl; |
|
if( (predictedLabel == testLabel) && !model->getLabelInfo(predictedLabel).empty() ) |
|
cout << format("%d-th label's info: %s", predictedLabel, model->getLabelInfo(predictedLabel).c_str()) << endl; |
|
// Sometimes you'll need to get/set internal model data, |
|
// which isn't exposed by the public cv::FaceRecognizer. |
|
// Since each cv::FaceRecognizer is derived from a |
|
// cv::Algorithm, you can query the data. |
|
// |
|
// First we'll use it to set the threshold of the FaceRecognizer |
|
// to 0.0 without retraining the model. This can be useful if |
|
// you are evaluating the model: |
|
// |
|
model->set("threshold", 0.0); |
|
// Now the threshold of this model is set to 0.0. A prediction |
|
// now returns -1, as it's impossible to have a distance below |
|
// it |
|
predictedLabel = model->predict(testSample); |
|
cout << "Predicted class = " << predictedLabel << endl; |
|
// Here is how to get the eigenvalues of this Eigenfaces model: |
|
Mat eigenvalues = model->getMat("eigenvalues"); |
|
// And we can do the same to display the Eigenvectors (read Eigenfaces): |
|
Mat W = model->getMat("eigenvectors"); |
|
// From this we will display the (at most) first 10 Eigenfaces: |
|
for (int i = 0; i < min(10, W.cols); i++) { |
|
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i)); |
|
cout << msg << endl; |
|
// get eigenvector #i |
|
Mat ev = W.col(i).clone(); |
|
// Reshape to original size & normalize to [0...255] for imshow. |
|
Mat grayscale = toGrayscale(ev.reshape(1, height)); |
|
// Show the image & apply a Jet colormap for better sensing. |
|
Mat cgrayscale; |
|
applyColorMap(grayscale, cgrayscale, COLORMAP_JET); |
|
imshow(format("%d", i), cgrayscale); |
|
} |
|
waitKey(0); |
|
|
|
return 0; |
|
}
|
|
|