mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
175 lines
5.9 KiB
175 lines
5.9 KiB
package org.opencv.test.features2d; |
|
|
|
import java.util.ArrayList; |
|
import java.util.Arrays; |
|
import java.util.Collections; |
|
import java.util.Comparator; |
|
import java.util.List; |
|
|
|
import org.opencv.core.CvType; |
|
import org.opencv.core.Mat; |
|
import org.opencv.core.MatOfKeyPoint; |
|
import org.opencv.core.Point; |
|
import org.opencv.core.Scalar; |
|
import org.opencv.core.KeyPoint; |
|
import org.opencv.test.OpenCVTestCase; |
|
import org.opencv.test.OpenCVTestRunner; |
|
import org.opencv.imgproc.Imgproc; |
|
import org.opencv.features2d.Feature2D; |
|
|
|
public class SURFFeatureDetectorTest extends OpenCVTestCase { |
|
|
|
Feature2D detector; |
|
int matSize; |
|
KeyPoint[] truth; |
|
|
|
private Mat getMaskImg() { |
|
Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); |
|
Mat right = mask.submat(0, matSize, matSize / 2, matSize); |
|
right.setTo(new Scalar(0)); |
|
return mask; |
|
} |
|
|
|
private Mat getTestImg() { |
|
Mat cross = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); |
|
Imgproc.line(cross, new Point(20, matSize / 2), new Point(matSize - 21, matSize / 2), new Scalar(100), 2); |
|
Imgproc.line(cross, new Point(matSize / 2, 20), new Point(matSize / 2, matSize - 21), new Scalar(100), 2); |
|
|
|
return cross; |
|
} |
|
|
|
private void order(List<KeyPoint> points) { |
|
Collections.sort(points, new Comparator<KeyPoint>() { |
|
public int compare(KeyPoint p1, KeyPoint p2) { |
|
if (p1.angle < p2.angle) |
|
return -1; |
|
if (p1.angle > p2.angle) |
|
return 1; |
|
return 0; |
|
} |
|
}); |
|
} |
|
|
|
@Override |
|
protected void setUp() throws Exception { |
|
super.setUp(); |
|
detector = createClassInstance(XFEATURES2D+"SURF", DEFAULT_FACTORY, null, null); |
|
matSize = 100; |
|
truth = new KeyPoint[] { |
|
new KeyPoint(55.775578f, 55.775578f, 16, 80.245735f, 8617.8633f, 0, -1), |
|
new KeyPoint(44.224422f, 55.775578f, 16, 170.24574f, 8617.8633f, 0, -1), |
|
new KeyPoint(44.224422f, 44.224422f, 16, 260.24573f, 8617.8633f, 0, -1), |
|
new KeyPoint(55.775578f, 44.224422f, 16, 350.24573f, 8617.8633f, 0, -1) |
|
}; |
|
} |
|
|
|
public void testCreate() { |
|
assertNotNull(detector); |
|
} |
|
|
|
public void testDetectListOfMatListOfListOfKeyPoint() { |
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000); |
|
setProperty(detector, "nOctaves", "int", 3); |
|
setProperty(detector, "nOctaveLayers", "int", 4); |
|
setProperty(detector, "upright", "boolean", false); |
|
|
|
List<MatOfKeyPoint> keypoints = new ArrayList<MatOfKeyPoint>(); |
|
Mat cross = getTestImg(); |
|
List<Mat> crosses = new ArrayList<Mat>(3); |
|
crosses.add(cross); |
|
crosses.add(cross); |
|
crosses.add(cross); |
|
|
|
detector.detect(crosses, keypoints); |
|
|
|
assertEquals(3, keypoints.size()); |
|
|
|
for (MatOfKeyPoint mkp : keypoints) { |
|
List<KeyPoint> lkp = mkp.toList(); |
|
order(lkp); |
|
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS); |
|
} |
|
} |
|
|
|
public void testDetectListOfMatListOfListOfKeyPointListOfMat() { |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testDetectMatListOfKeyPoint() { |
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000); |
|
setProperty(detector, "nOctaves", "int", 3); |
|
setProperty(detector, "nOctaveLayers", "int", 4); |
|
setProperty(detector, "upright", "boolean", false); |
|
|
|
MatOfKeyPoint keypoints = new MatOfKeyPoint(); |
|
Mat cross = getTestImg(); |
|
|
|
detector.detect(cross, keypoints); |
|
|
|
List<KeyPoint> lkp = keypoints.toList(); |
|
order(lkp); |
|
assertListKeyPointEquals(Arrays.asList(truth), lkp, EPS); |
|
} |
|
|
|
public void testDetectMatListOfKeyPointMat() { |
|
|
|
setProperty(detector, "hessianThreshold", "double", 8000); |
|
setProperty(detector, "nOctaves", "int", 3); |
|
setProperty(detector, "nOctaveLayers", "int", 4); |
|
setProperty(detector, "upright", "boolean", false); |
|
|
|
Mat img = getTestImg(); |
|
Mat mask = getMaskImg(); |
|
MatOfKeyPoint keypoints = new MatOfKeyPoint(); |
|
|
|
detector.detect(img, keypoints, mask); |
|
|
|
List<KeyPoint> lkp = keypoints.toList(); |
|
order(lkp); |
|
assertListKeyPointEquals(Arrays.asList(truth[1], truth[2]), lkp, EPS); |
|
} |
|
|
|
public void testEmpty() { |
|
// assertFalse(detector.empty()); |
|
fail("Not yet implemented"); |
|
} |
|
|
|
public void testRead() { |
|
Mat cross = getTestImg(); |
|
|
|
MatOfKeyPoint keypoints1 = new MatOfKeyPoint(); |
|
detector.detect(cross, keypoints1); |
|
|
|
String filename = OpenCVTestRunner.getTempFileName("yml"); |
|
writeFile(filename, "%YAML:1.0\n---\nhessianThreshold: 8000.\noctaves: 3\noctaveLayers: 4\nupright: 0\n"); |
|
detector.read(filename); |
|
|
|
MatOfKeyPoint keypoints2 = new MatOfKeyPoint(); |
|
detector.detect(cross, keypoints2); |
|
|
|
assertTrue(keypoints2.total() <= keypoints1.total()); |
|
} |
|
|
|
public void testWrite() { |
|
String filename = OpenCVTestRunner.getTempFileName("xml"); |
|
|
|
detector.write(filename); |
|
|
|
// String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<name>Feature2D.SURF</name>\n<extended>0</extended>\n<hessianThreshold>100.</hessianThreshold>\n<nOctaveLayers>3</nOctaveLayers>\n<nOctaves>4</nOctaves>\n<upright>0</upright>\n</opencv_storage>\n"; |
|
String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n</opencv_storage>\n"; |
|
assertEquals(truth, readFile(filename)); |
|
} |
|
|
|
public void testWriteYml() { |
|
String filename = OpenCVTestRunner.getTempFileName("yml"); |
|
|
|
detector.write(filename); |
|
|
|
// String truth = "%YAML:1.0\n---\nname: \"Feature2D.SURF\"\nextended: 0\nhessianThreshold: 100.\nnOctaveLayers: 3\nnOctaves: 4\nupright: 0\n"; |
|
String truth = "%YAML:1.0\n---\n"; |
|
assertEquals(truth, readFile(filename)); |
|
} |
|
|
|
}
|
|
|