mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
259 lines
7.3 KiB
259 lines
7.3 KiB
#include "clapack.h" |
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
|
|
/* Subroutine */ int slaed9_(integer *k, integer *kstart, integer *kstop, |
|
integer *n, real *d__, real *q, integer *ldq, real *rho, real *dlamda, |
|
real *w, real *s, integer *lds, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2; |
|
real r__1; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal), r_sign(real *, real *); |
|
|
|
/* Local variables */ |
|
integer i__, j; |
|
real temp; |
|
extern doublereal snrm2_(integer *, real *, integer *); |
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, |
|
integer *), slaed4_(integer *, integer *, real *, real *, real *, |
|
real *, real *, integer *); |
|
extern doublereal slamc3_(real *, real *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.1) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLAED9 finds the roots of the secular equation, as defined by the */ |
|
/* values in D, Z, and RHO, between KSTART and KSTOP. It makes the */ |
|
/* appropriate calls to SLAED4 and then stores the new matrix of */ |
|
/* eigenvectors for use in calculating the next level of Z vectors. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* K (input) INTEGER */ |
|
/* The number of terms in the rational function to be solved by */ |
|
/* SLAED4. K >= 0. */ |
|
|
|
/* KSTART (input) INTEGER */ |
|
/* KSTOP (input) INTEGER */ |
|
/* The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP */ |
|
/* are to be computed. 1 <= KSTART <= KSTOP <= K. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of rows and columns in the Q matrix. */ |
|
/* N >= K (delation may result in N > K). */ |
|
|
|
/* D (output) REAL array, dimension (N) */ |
|
/* D(I) contains the updated eigenvalues */ |
|
/* for KSTART <= I <= KSTOP. */ |
|
|
|
/* Q (workspace) REAL array, dimension (LDQ,N) */ |
|
|
|
/* LDQ (input) INTEGER */ |
|
/* The leading dimension of the array Q. LDQ >= max( 1, N ). */ |
|
|
|
/* RHO (input) REAL */ |
|
/* The value of the parameter in the rank one update equation. */ |
|
/* RHO >= 0 required. */ |
|
|
|
/* DLAMDA (input) REAL array, dimension (K) */ |
|
/* The first K elements of this array contain the old roots */ |
|
/* of the deflated updating problem. These are the poles */ |
|
/* of the secular equation. */ |
|
|
|
/* W (input) REAL array, dimension (K) */ |
|
/* The first K elements of this array contain the components */ |
|
/* of the deflation-adjusted updating vector. */ |
|
|
|
/* S (output) REAL array, dimension (LDS, K) */ |
|
/* Will contain the eigenvectors of the repaired matrix which */ |
|
/* will be stored for subsequent Z vector calculation and */ |
|
/* multiplied by the previously accumulated eigenvectors */ |
|
/* to update the system. */ |
|
|
|
/* LDS (input) INTEGER */ |
|
/* The leading dimension of S. LDS >= max( 1, K ). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
/* > 0: if INFO = 1, an eigenvalue did not converge */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Jeff Rutter, Computer Science Division, University of California */ |
|
/* at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
q_dim1 = *ldq; |
|
q_offset = 1 + q_dim1; |
|
q -= q_offset; |
|
--dlamda; |
|
--w; |
|
s_dim1 = *lds; |
|
s_offset = 1 + s_dim1; |
|
s -= s_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*k < 0) { |
|
*info = -1; |
|
} else if (*kstart < 1 || *kstart > max(1,*k)) { |
|
*info = -2; |
|
} else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) { |
|
*info = -3; |
|
} else if (*n < *k) { |
|
*info = -4; |
|
} else if (*ldq < max(1,*k)) { |
|
*info = -7; |
|
} else if (*lds < max(1,*k)) { |
|
*info = -12; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SLAED9", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*k == 0) { |
|
return 0; |
|
} |
|
|
|
/* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */ |
|
/* be computed with high relative accuracy (barring over/underflow). */ |
|
/* This is a problem on machines without a guard digit in */ |
|
/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ |
|
/* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */ |
|
/* which on any of these machines zeros out the bottommost */ |
|
/* bit of DLAMDA(I) if it is 1; this makes the subsequent */ |
|
/* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */ |
|
/* occurs. On binary machines with a guard digit (almost all */ |
|
/* machines) it does not change DLAMDA(I) at all. On hexadecimal */ |
|
/* and decimal machines with a guard digit, it slightly */ |
|
/* changes the bottommost bits of DLAMDA(I). It does not account */ |
|
/* for hexadecimal or decimal machines without guard digits */ |
|
/* (we know of none). We use a subroutine call to compute */ |
|
/* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ |
|
/* this code. */ |
|
|
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
dlamda[i__] = slamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__]; |
|
/* L10: */ |
|
} |
|
|
|
i__1 = *kstop; |
|
for (j = *kstart; j <= i__1; ++j) { |
|
slaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], |
|
info); |
|
|
|
/* If the zero finder fails, the computation is terminated. */ |
|
|
|
if (*info != 0) { |
|
goto L120; |
|
} |
|
/* L20: */ |
|
} |
|
|
|
if (*k == 1 || *k == 2) { |
|
i__1 = *k; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
i__2 = *k; |
|
for (j = 1; j <= i__2; ++j) { |
|
s[j + i__ * s_dim1] = q[j + i__ * q_dim1]; |
|
/* L30: */ |
|
} |
|
/* L40: */ |
|
} |
|
goto L120; |
|
} |
|
|
|
/* Compute updated W. */ |
|
|
|
scopy_(k, &w[1], &c__1, &s[s_offset], &c__1); |
|
|
|
/* Initialize W(I) = Q(I,I) */ |
|
|
|
i__1 = *ldq + 1; |
|
scopy_(k, &q[q_offset], &i__1, &w[1], &c__1); |
|
i__1 = *k; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = j - 1; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); |
|
/* L50: */ |
|
} |
|
i__2 = *k; |
|
for (i__ = j + 1; i__ <= i__2; ++i__) { |
|
w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); |
|
/* L60: */ |
|
} |
|
/* L70: */ |
|
} |
|
i__1 = *k; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
r__1 = sqrt(-w[i__]); |
|
w[i__] = r_sign(&r__1, &s[i__ + s_dim1]); |
|
/* L80: */ |
|
} |
|
|
|
/* Compute eigenvectors of the modified rank-1 modification. */ |
|
|
|
i__1 = *k; |
|
for (j = 1; j <= i__1; ++j) { |
|
i__2 = *k; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1]; |
|
/* L90: */ |
|
} |
|
temp = snrm2_(k, &q[j * q_dim1 + 1], &c__1); |
|
i__2 = *k; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp; |
|
/* L100: */ |
|
} |
|
/* L110: */ |
|
} |
|
|
|
L120: |
|
return 0; |
|
|
|
/* End of SLAED9 */ |
|
|
|
} /* slaed9_ */
|
|
|