Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
587 lines
18 KiB
587 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <precomp.hpp> |
|
|
|
namespace { |
|
|
|
struct Octave |
|
{ |
|
Octave(const int i, const cv::Size& origObjSize, const cv::FileNode& fn) |
|
: index(i), scale((float)fn[SC_OCT_SCALE]), stages((int)fn[SC_OCT_STAGES]), |
|
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)), |
|
shrinkage((int)fn[SC_OCT_SHRINKAGE]) {} |
|
|
|
int index; |
|
float scale; |
|
int stages; |
|
cv::Size size; |
|
int shrinkage; |
|
|
|
static const char *const SC_OCT_SCALE; |
|
static const char *const SC_OCT_STAGES; |
|
static const char *const SC_OCT_SHRINKAGE; |
|
}; |
|
|
|
|
|
struct Weak |
|
{ |
|
Weak(){} |
|
Weak(const cv::FileNode& fn) : threshold((float)fn[SC_STAGE_THRESHOLD]){} |
|
|
|
float threshold; |
|
|
|
static const char *const SC_STAGE_THRESHOLD; |
|
}; |
|
|
|
|
|
struct Node |
|
{ |
|
Node(){} |
|
Node(const int offset, cv::FileNodeIterator& fIt) |
|
: feature((int)(*(fIt +=2)++) + offset), threshold((float)(*(fIt++))){} |
|
|
|
int feature; |
|
float threshold; |
|
}; |
|
|
|
struct Feature |
|
{ |
|
Feature() {} |
|
Feature(const cv::FileNode& fn) : channel((int)fn[SC_F_CHANNEL]) |
|
{ |
|
cv::FileNode rn = fn[SC_F_RECT]; |
|
cv::FileNodeIterator r_it = rn.begin(); |
|
|
|
int x = *r_it++; |
|
int y = *r_it++; |
|
int w = *r_it++; |
|
int h = *r_it++; |
|
rect = cv::Rect(x, y, w, h); |
|
|
|
// 1 / area |
|
rarea = 1.f / ((rect.width - rect.x) * (rect.height - rect.y)); |
|
} |
|
|
|
int channel; |
|
cv::Rect rect; |
|
float rarea; |
|
|
|
static const char *const SC_F_CHANNEL; |
|
static const char *const SC_F_RECT; |
|
|
|
}; |
|
|
|
const char *const Octave::SC_OCT_SCALE = "scale"; |
|
const char *const Octave::SC_OCT_STAGES = "stageNum"; |
|
const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor"; |
|
const char *const Weak::SC_STAGE_THRESHOLD = "stageThreshold"; |
|
const char *const Feature::SC_F_CHANNEL = "channel"; |
|
const char *const Feature::SC_F_RECT = "rect"; |
|
|
|
struct Level |
|
{ |
|
const Octave* octave; |
|
|
|
float origScale; |
|
float relScale; |
|
int scaleshift; |
|
|
|
cv::Size workRect; |
|
cv::Size objSize; |
|
|
|
float scaling[2]; // 0-th for channels <= 6, 1-st otherwise |
|
typedef cv::SCascade::Detection Detection; |
|
|
|
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h) |
|
: octave(&oct), origScale(scale), relScale(scale / oct.scale), |
|
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), |
|
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) |
|
{ |
|
scaling[0] = ((relScale >= 1.f)? 1.f : (0.89f * pow(relScale, 1.099f / log(2.f)))) / (relScale * relScale); |
|
scaling[1] = 1.f; |
|
scaleshift = static_cast<int>(relScale * (1 << 16)); |
|
} |
|
|
|
void addDetection(const int x, const int y, float confidence, std::vector<Detection>& detections) const |
|
{ |
|
int shrinkage = (*octave).shrinkage; |
|
cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height); |
|
|
|
detections.push_back(Detection(rect, confidence)); |
|
} |
|
|
|
float rescale(cv::Rect& scaledRect, const float threshold, int idx) const |
|
{ |
|
#define SSHIFT(a) ((a) + (1 << 15)) >> 16 |
|
// rescale |
|
scaledRect.x = SSHIFT(scaleshift * scaledRect.x); |
|
scaledRect.y = SSHIFT(scaleshift * scaledRect.y); |
|
scaledRect.width = SSHIFT(scaleshift * scaledRect.width); |
|
scaledRect.height = SSHIFT(scaleshift * scaledRect.height); |
|
#undef SSHIFT |
|
float sarea = static_cast<float>((scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y)); |
|
|
|
// compensation areas rounding |
|
return (sarea == 0.0f)? threshold : (threshold * scaling[idx] * sarea); |
|
} |
|
}; |
|
|
|
struct ChannelStorage |
|
{ |
|
std::vector<cv::Mat> hog; |
|
int shrinkage; |
|
int offset; |
|
int step; |
|
|
|
enum {HOG_BINS = 6, HOG_LUV_BINS = 10}; |
|
|
|
ChannelStorage(const cv::Mat& colored, int shr) : shrinkage(shr) |
|
{ |
|
hog.clear(); |
|
hog.reserve(10); |
|
cv::SCascade::Channels ints(shr); |
|
|
|
// convert to grey |
|
cv::Mat grey; |
|
cv::cvtColor(colored, grey, CV_BGR2GRAY); |
|
|
|
ints.appendHogBins(grey, hog, 6); |
|
ints.appendLuvBins(colored, hog); |
|
|
|
step = hog[0].cols; |
|
} |
|
|
|
float get(const int channel, const cv::Rect& area) const |
|
{ |
|
// CV_Assert(channel < HOG_LUV_BINS); |
|
const cv::Mat& m = hog[channel]; |
|
int *ptr = ((int*)(m.data)) + offset; |
|
|
|
int a = ptr[area.y * step + area.x]; |
|
int b = ptr[area.y * step + area.width]; |
|
int c = ptr[area.height * step + area.width]; |
|
int d = ptr[area.height * step + area.x]; |
|
|
|
return static_cast<float>(a - b + c - d); |
|
} |
|
}; |
|
|
|
} |
|
|
|
struct cv::SCascade::Fields |
|
{ |
|
float minScale; |
|
float maxScale; |
|
int scales; |
|
|
|
int origObjWidth; |
|
int origObjHeight; |
|
|
|
int shrinkage; |
|
|
|
std::vector<Octave> octaves; |
|
std::vector<Weak> stages; |
|
std::vector<Node> nodes; |
|
std::vector<float> leaves; |
|
std::vector<Feature> features; |
|
|
|
std::vector<Level> levels; |
|
|
|
cv::Size frameSize; |
|
|
|
typedef std::vector<Octave>::iterator octIt_t; |
|
|
|
void detectAt(const int dx, const int dy, const Level& level, const ChannelStorage& storage, |
|
std::vector<Detection>& detections) const |
|
{ |
|
float detectionScore = 0.f; |
|
|
|
const Octave& octave = *(level.octave); |
|
int stBegin = octave.index * octave.stages, stEnd = stBegin + octave.stages; |
|
|
|
int st = stBegin; |
|
for(; st < stEnd; ++st) |
|
{ |
|
const Weak& stage = stages[st]; |
|
{ |
|
int nId = st * 3; |
|
|
|
// work with root node |
|
const Node& node = nodes[nId]; |
|
const Feature& feature = features[node.feature]; |
|
cv::Rect scaledRect(feature.rect); |
|
|
|
float threshold = level.rescale(scaledRect, node.threshold,(int)(feature.channel > 6)) * feature.rarea; |
|
|
|
float sum = storage.get(feature.channel, scaledRect); |
|
|
|
int next = (sum >= threshold)? 2 : 1; |
|
|
|
// leaves |
|
const Node& leaf = nodes[nId + next]; |
|
const Feature& fLeaf = features[leaf.feature]; |
|
|
|
scaledRect = fLeaf.rect; |
|
threshold = level.rescale(scaledRect, leaf.threshold, (int)(fLeaf.channel > 6)) * fLeaf.rarea; |
|
|
|
sum = storage.get(fLeaf.channel, scaledRect); |
|
|
|
int lShift = (next - 1) * 2 + ((sum >= threshold) ? 1 : 0); |
|
float impact = leaves[(st * 4) + lShift]; |
|
|
|
detectionScore += impact; |
|
} |
|
|
|
if (detectionScore <= stage.threshold) return; |
|
} |
|
|
|
if (detectionScore > 0) |
|
level.addDetection(dx, dy, detectionScore, detections); |
|
} |
|
|
|
octIt_t fitOctave(const float& logFactor) |
|
{ |
|
float minAbsLog = FLT_MAX; |
|
octIt_t res = octaves.begin(); |
|
for (octIt_t oct = octaves.begin(); oct < octaves.end(); ++oct) |
|
{ |
|
const Octave& octave =*oct; |
|
float logOctave = log(octave.scale); |
|
float logAbsScale = fabs(logFactor - logOctave); |
|
|
|
if(logAbsScale < minAbsLog) |
|
{ |
|
res = oct; |
|
minAbsLog = logAbsScale; |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
// compute levels of full pyramid |
|
void calcLevels(const cv::Size& curr, float mins, float maxs, int total) |
|
{ |
|
if (frameSize == curr && maxs == maxScale && mins == minScale && total == scales) return; |
|
|
|
frameSize = curr; |
|
maxScale = maxs; minScale = mins; scales = total; |
|
CV_Assert(scales > 1); |
|
|
|
levels.clear(); |
|
float logFactor = (log(maxScale) - log(minScale)) / (scales -1); |
|
|
|
float scale = minScale; |
|
for (int sc = 0; sc < scales; ++sc) |
|
{ |
|
int width = static_cast<int>(std::max(0.0f, frameSize.width - (origObjWidth * scale))); |
|
int height = static_cast<int>(std::max(0.0f, frameSize.height - (origObjHeight * scale))); |
|
|
|
float logScale = log(scale); |
|
octIt_t fit = fitOctave(logScale); |
|
|
|
|
|
Level level(*fit, scale, shrinkage, width, height); |
|
|
|
if (!width || !height) |
|
break; |
|
else |
|
levels.push_back(level); |
|
|
|
if (fabs(scale - maxScale) < FLT_EPSILON) break; |
|
scale = std::min(maxScale, expf(log(scale) + logFactor)); |
|
} |
|
} |
|
|
|
bool fill(const FileNode &root) |
|
{ |
|
// cascade properties |
|
static const char *const SC_STAGE_TYPE = "stageType"; |
|
static const char *const SC_BOOST = "BOOST"; |
|
|
|
static const char *const SC_FEATURE_TYPE = "featureType"; |
|
static const char *const SC_ICF = "ICF"; |
|
|
|
static const char *const SC_ORIG_W = "width"; |
|
static const char *const SC_ORIG_H = "height"; |
|
|
|
static const char *const SC_OCTAVES = "octaves"; |
|
static const char *const SC_STAGES = "stages"; |
|
static const char *const SC_FEATURES = "features"; |
|
|
|
static const char *const SC_WEEK = "weakClassifiers"; |
|
static const char *const SC_INTERNAL = "internalNodes"; |
|
static const char *const SC_LEAF = "leafValues"; |
|
|
|
|
|
// only Ada Boost supported |
|
std::string stageTypeStr = (string)root[SC_STAGE_TYPE]; |
|
CV_Assert(stageTypeStr == SC_BOOST); |
|
|
|
// only HOG-like integral channel features cupported |
|
string featureTypeStr = (string)root[SC_FEATURE_TYPE]; |
|
CV_Assert(featureTypeStr == SC_ICF); |
|
|
|
origObjWidth = (int)root[SC_ORIG_W]; |
|
origObjHeight = (int)root[SC_ORIG_H]; |
|
|
|
// for each octave (~ one cascade in classic OpenCV xml) |
|
FileNode fn = root[SC_OCTAVES]; |
|
if (fn.empty()) return false; |
|
|
|
// octaves.reserve(noctaves); |
|
FileNodeIterator it = fn.begin(), it_end = fn.end(); |
|
int feature_offset = 0; |
|
int octIndex = 0; |
|
for (; it != it_end; ++it) |
|
{ |
|
FileNode fns = *it; |
|
Octave octave(octIndex, cv::Size(origObjWidth, origObjHeight), fns); |
|
CV_Assert(octave.stages > 0); |
|
octaves.push_back(octave); |
|
|
|
FileNode ffs = fns[SC_FEATURES]; |
|
if (ffs.empty()) return false; |
|
|
|
fns = fns[SC_STAGES]; |
|
if (fn.empty()) return false; |
|
|
|
// for each stage (~ decision tree with H = 2) |
|
FileNodeIterator st = fns.begin(), st_end = fns.end(); |
|
for (; st != st_end; ++st ) |
|
{ |
|
fns = *st; |
|
stages.push_back(Weak(fns)); |
|
|
|
fns = fns[SC_WEEK]; |
|
FileNodeIterator ftr = fns.begin(), ft_end = fns.end(); |
|
for (; ftr != ft_end; ++ftr) |
|
{ |
|
fns = (*ftr)[SC_INTERNAL]; |
|
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); |
|
for (; inIt != inIt_end;) |
|
nodes.push_back(Node(feature_offset, inIt)); |
|
|
|
fns = (*ftr)[SC_LEAF]; |
|
inIt = fns.begin(), inIt_end = fns.end(); |
|
for (; inIt != inIt_end; ++inIt) |
|
leaves.push_back((float)(*inIt)); |
|
} |
|
} |
|
|
|
st = ffs.begin(), st_end = ffs.end(); |
|
for (; st != st_end; ++st ) |
|
features.push_back(Feature(*st)); |
|
|
|
feature_offset += octave.stages * 3; |
|
++octIndex; |
|
} |
|
|
|
shrinkage = octaves[0].shrinkage; |
|
return true; |
|
} |
|
}; |
|
|
|
cv::SCascade::SCascade(const double mins, const double maxs, const int nsc, const int rej) |
|
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {} |
|
|
|
cv::SCascade::~SCascade() { delete fields;} |
|
|
|
void cv::SCascade::read(const FileNode& fn) |
|
{ |
|
Algorithm::read(fn); |
|
} |
|
|
|
bool cv::SCascade::load(const FileNode& fn) |
|
{ |
|
if (fields) delete fields; |
|
|
|
fields = new Fields; |
|
return fields->fill(fn); |
|
} |
|
|
|
namespace { |
|
typedef cv::SCascade::Detection Detection; |
|
typedef std::vector<Detection> dvector; |
|
|
|
|
|
struct ConfidenceGt |
|
{ |
|
bool operator()(const Detection& a, const Detection& b) const |
|
{ |
|
return a.confidence > b.confidence; |
|
} |
|
}; |
|
|
|
static float overlap(const cv::Rect &a, const cv::Rect &b) |
|
{ |
|
int w = std::min(a.x + a.width, b.x + b.width) - std::max(a.x, b.x); |
|
int h = std::min(a.y + a.height, b.y + b.height) - std::max(a.y, b.y); |
|
|
|
return (w < 0 || h < 0)? 0.f : (float)(w * h); |
|
} |
|
|
|
void DollarNMS(dvector& objects) |
|
{ |
|
static const float DollarThreshold = 0.65f; |
|
std::sort(objects.begin(), objects.end(), ConfidenceGt()); |
|
|
|
for (dvector::iterator dIt = objects.begin(); dIt != objects.end(); ++dIt) |
|
{ |
|
const Detection &a = *dIt; |
|
for (dvector::iterator next = dIt + 1; next != objects.end(); ) |
|
{ |
|
const Detection &b = *next; |
|
|
|
const float ovl = overlap(a.bb, b.bb) / std::min(a.bb.area(), b.bb.area()); |
|
|
|
if (ovl > DollarThreshold) |
|
next = objects.erase(next); |
|
else |
|
++next; |
|
} |
|
} |
|
} |
|
|
|
static void suppress(int type, std::vector<Detection>& objects) |
|
{ |
|
CV_Assert(type == cv::SCascade::DOLLAR); |
|
DollarNMS(objects); |
|
} |
|
|
|
} |
|
|
|
void cv::SCascade::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const |
|
{ |
|
Fields& fld = *fields; |
|
// create integrals |
|
ChannelStorage storage(image, fld.shrinkage); |
|
|
|
typedef std::vector<Level>::const_iterator lIt; |
|
for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) |
|
{ |
|
const Level& level = *it; |
|
|
|
for (int dy = 0; dy < level.workRect.height; ++dy) |
|
{ |
|
for (int dx = 0; dx < level.workRect.width; ++dx) |
|
{ |
|
storage.offset = dy * storage.step + dx; |
|
fld.detectAt(dx, dy, level, storage, objects); |
|
} |
|
} |
|
} |
|
|
|
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects); |
|
} |
|
|
|
void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const |
|
{ |
|
// only color images are supperted |
|
cv::Mat image = _image.getMat(); |
|
CV_Assert(image.type() == CV_8UC3); |
|
|
|
Fields& fld = *fields; |
|
fld.calcLevels(image.size(),(float) minScale, (float)maxScale, scales); |
|
|
|
objects.clear(); |
|
|
|
if (_rois.kind() == cv::_InputArray::NONE) |
|
return detectNoRoi(image, objects); |
|
|
|
int shr = fld.shrinkage; |
|
|
|
cv::Mat roi = _rois.getMat(); |
|
cv::Mat mask(image.rows / shr, image.cols / shr, CV_8UC1); |
|
|
|
mask.setTo(cv::Scalar::all(0)); |
|
cv::Rect* r = roi.ptr<cv::Rect>(0); |
|
for (int i = 0; i < (int)roi.cols; ++i) |
|
cv::Mat(mask, cv::Rect(r[i].x / shr, r[i].y / shr, r[i].width / shr , r[i].height / shr)).setTo(cv::Scalar::all(1)); |
|
|
|
// create integrals |
|
ChannelStorage storage(image, shr); |
|
|
|
typedef std::vector<Level>::const_iterator lIt; |
|
for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) |
|
{ |
|
const Level& level = *it; |
|
|
|
for (int dy = 0; dy < level.workRect.height; ++dy) |
|
{ |
|
uchar* m = mask.ptr<uchar>(dy); |
|
for (int dx = 0; dx < level.workRect.width; ++dx) |
|
{ |
|
if (m[dx]) |
|
{ |
|
storage.offset = dy * storage.step + dx; |
|
fld.detectAt(dx, dy, level, storage, objects); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects); |
|
} |
|
|
|
void cv::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const |
|
{ |
|
std::vector<Detection> objects; |
|
detect( _image, _rois, objects); |
|
|
|
_rects.create(1, objects.size(), CV_32SC4); |
|
cv::Mat_<cv::Rect> rects = (cv::Mat_<cv::Rect>)_rects.getMat(); |
|
cv::Rect* rectPtr = rects.ptr<cv::Rect>(0); |
|
|
|
_confs.create(1, objects.size(), CV_32F); |
|
cv::Mat confs = _confs.getMat(); |
|
float* confPtr = rects.ptr<float>(0); |
|
|
|
typedef std::vector<Detection>::const_iterator IDet; |
|
|
|
int i = 0; |
|
for (IDet it = objects.begin(); it != objects.end(); ++it, ++i) |
|
{ |
|
rectPtr[i] = (*it).bb; |
|
confPtr[i] = (*it).confidence; |
|
} |
|
} |