mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
4.4 KiB
166 lines
4.4 KiB
/* slanst.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
|
|
doublereal slanst_(char *norm, integer *n, real *d__, real *e) |
|
{ |
|
/* System generated locals */ |
|
integer i__1; |
|
real ret_val, r__1, r__2, r__3, r__4, r__5; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
integer i__; |
|
real sum, scale; |
|
extern logical lsame_(char *, char *); |
|
real anorm; |
|
extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, |
|
real *); |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLANST returns the value of the one norm, or the Frobenius norm, or */ |
|
/* the infinity norm, or the element of largest absolute value of a */ |
|
/* real symmetric tridiagonal matrix A. */ |
|
|
|
/* Description */ |
|
/* =========== */ |
|
|
|
/* SLANST returns the value */ |
|
|
|
/* SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ |
|
/* ( */ |
|
/* ( norm1(A), NORM = '1', 'O' or 'o' */ |
|
/* ( */ |
|
/* ( normI(A), NORM = 'I' or 'i' */ |
|
/* ( */ |
|
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ |
|
|
|
/* where norm1 denotes the one norm of a matrix (maximum column sum), */ |
|
/* normI denotes the infinity norm of a matrix (maximum row sum) and */ |
|
/* normF denotes the Frobenius norm of a matrix (square root of sum of */ |
|
/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* NORM (input) CHARACTER*1 */ |
|
/* Specifies the value to be returned in SLANST as described */ |
|
/* above. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix A. N >= 0. When N = 0, SLANST is */ |
|
/* set to zero. */ |
|
|
|
/* D (input) REAL array, dimension (N) */ |
|
/* The diagonal elements of A. */ |
|
|
|
/* E (input) REAL array, dimension (N-1) */ |
|
/* The (n-1) sub-diagonal or super-diagonal elements of A. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Parameter adjustments */ |
|
--e; |
|
--d__; |
|
|
|
/* Function Body */ |
|
if (*n <= 0) { |
|
anorm = 0.f; |
|
} else if (lsame_(norm, "M")) { |
|
|
|
/* Find max(abs(A(i,j))). */ |
|
|
|
anorm = (r__1 = d__[*n], dabs(r__1)); |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
/* Computing MAX */ |
|
r__2 = anorm, r__3 = (r__1 = d__[i__], dabs(r__1)); |
|
anorm = dmax(r__2,r__3); |
|
/* Computing MAX */ |
|
r__2 = anorm, r__3 = (r__1 = e[i__], dabs(r__1)); |
|
anorm = dmax(r__2,r__3); |
|
/* L10: */ |
|
} |
|
} else if (lsame_(norm, "O") || *(unsigned char *) |
|
norm == '1' || lsame_(norm, "I")) { |
|
|
|
/* Find norm1(A). */ |
|
|
|
if (*n == 1) { |
|
anorm = dabs(d__[1]); |
|
} else { |
|
/* Computing MAX */ |
|
r__3 = dabs(d__[1]) + dabs(e[1]), r__4 = (r__1 = e[*n - 1], dabs( |
|
r__1)) + (r__2 = d__[*n], dabs(r__2)); |
|
anorm = dmax(r__3,r__4); |
|
i__1 = *n - 1; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
/* Computing MAX */ |
|
r__4 = anorm, r__5 = (r__1 = d__[i__], dabs(r__1)) + (r__2 = |
|
e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3)); |
|
anorm = dmax(r__4,r__5); |
|
/* L20: */ |
|
} |
|
} |
|
} else if (lsame_(norm, "F") || lsame_(norm, "E")) { |
|
|
|
/* Find normF(A). */ |
|
|
|
scale = 0.f; |
|
sum = 1.f; |
|
if (*n > 1) { |
|
i__1 = *n - 1; |
|
slassq_(&i__1, &e[1], &c__1, &scale, &sum); |
|
sum *= 2; |
|
} |
|
slassq_(n, &d__[1], &c__1, &scale, &sum); |
|
anorm = scale * sqrt(sum); |
|
} |
|
|
|
ret_val = anorm; |
|
return ret_val; |
|
|
|
/* End of SLANST */ |
|
|
|
} /* slanst_ */
|
|
|