mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
4.7 KiB
188 lines
4.7 KiB
/* dlaev2.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dlaev2_(doublereal *a, doublereal *b, doublereal *c__, |
|
doublereal *rt1, doublereal *rt2, doublereal *cs1, doublereal *sn1) |
|
{ |
|
/* System generated locals */ |
|
doublereal d__1; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
doublereal ab, df, cs, ct, tb, sm, tn, rt, adf, acs; |
|
integer sgn1, sgn2; |
|
doublereal acmn, acmx; |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix */ |
|
/* [ A B ] */ |
|
/* [ B C ]. */ |
|
/* On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */ |
|
/* eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */ |
|
/* eigenvector for RT1, giving the decomposition */ |
|
|
|
/* [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] */ |
|
/* [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* A (input) DOUBLE PRECISION */ |
|
/* The (1,1) element of the 2-by-2 matrix. */ |
|
|
|
/* B (input) DOUBLE PRECISION */ |
|
/* The (1,2) element and the conjugate of the (2,1) element of */ |
|
/* the 2-by-2 matrix. */ |
|
|
|
/* C (input) DOUBLE PRECISION */ |
|
/* The (2,2) element of the 2-by-2 matrix. */ |
|
|
|
/* RT1 (output) DOUBLE PRECISION */ |
|
/* The eigenvalue of larger absolute value. */ |
|
|
|
/* RT2 (output) DOUBLE PRECISION */ |
|
/* The eigenvalue of smaller absolute value. */ |
|
|
|
/* CS1 (output) DOUBLE PRECISION */ |
|
/* SN1 (output) DOUBLE PRECISION */ |
|
/* The vector (CS1, SN1) is a unit right eigenvector for RT1. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* RT1 is accurate to a few ulps barring over/underflow. */ |
|
|
|
/* RT2 may be inaccurate if there is massive cancellation in the */ |
|
/* determinant A*C-B*B; higher precision or correctly rounded or */ |
|
/* correctly truncated arithmetic would be needed to compute RT2 */ |
|
/* accurately in all cases. */ |
|
|
|
/* CS1 and SN1 are accurate to a few ulps barring over/underflow. */ |
|
|
|
/* Overflow is possible only if RT1 is within a factor of 5 of overflow. */ |
|
/* Underflow is harmless if the input data is 0 or exceeds */ |
|
/* underflow_threshold / macheps. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Compute the eigenvalues */ |
|
|
|
sm = *a + *c__; |
|
df = *a - *c__; |
|
adf = abs(df); |
|
tb = *b + *b; |
|
ab = abs(tb); |
|
if (abs(*a) > abs(*c__)) { |
|
acmx = *a; |
|
acmn = *c__; |
|
} else { |
|
acmx = *c__; |
|
acmn = *a; |
|
} |
|
if (adf > ab) { |
|
/* Computing 2nd power */ |
|
d__1 = ab / adf; |
|
rt = adf * sqrt(d__1 * d__1 + 1.); |
|
} else if (adf < ab) { |
|
/* Computing 2nd power */ |
|
d__1 = adf / ab; |
|
rt = ab * sqrt(d__1 * d__1 + 1.); |
|
} else { |
|
|
|
/* Includes case AB=ADF=0 */ |
|
|
|
rt = ab * sqrt(2.); |
|
} |
|
if (sm < 0.) { |
|
*rt1 = (sm - rt) * .5; |
|
sgn1 = -1; |
|
|
|
/* Order of execution important. */ |
|
/* To get fully accurate smaller eigenvalue, */ |
|
/* next line needs to be executed in higher precision. */ |
|
|
|
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; |
|
} else if (sm > 0.) { |
|
*rt1 = (sm + rt) * .5; |
|
sgn1 = 1; |
|
|
|
/* Order of execution important. */ |
|
/* To get fully accurate smaller eigenvalue, */ |
|
/* next line needs to be executed in higher precision. */ |
|
|
|
*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; |
|
} else { |
|
|
|
/* Includes case RT1 = RT2 = 0 */ |
|
|
|
*rt1 = rt * .5; |
|
*rt2 = rt * -.5; |
|
sgn1 = 1; |
|
} |
|
|
|
/* Compute the eigenvector */ |
|
|
|
if (df >= 0.) { |
|
cs = df + rt; |
|
sgn2 = 1; |
|
} else { |
|
cs = df - rt; |
|
sgn2 = -1; |
|
} |
|
acs = abs(cs); |
|
if (acs > ab) { |
|
ct = -tb / cs; |
|
*sn1 = 1. / sqrt(ct * ct + 1.); |
|
*cs1 = ct * *sn1; |
|
} else { |
|
if (ab == 0.) { |
|
*cs1 = 1.; |
|
*sn1 = 0.; |
|
} else { |
|
tn = -cs / tb; |
|
*cs1 = 1. / sqrt(tn * tn + 1.); |
|
*sn1 = tn * *cs1; |
|
} |
|
} |
|
if (sgn1 == sgn2) { |
|
tn = *cs1; |
|
*cs1 = -(*sn1); |
|
*sn1 = tn; |
|
} |
|
return 0; |
|
|
|
/* End of DLAEV2 */ |
|
|
|
} /* dlaev2_ */
|
|
|