mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.3 KiB
133 lines
4.3 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "../test_precomp.hpp" |
|
#include "opencv2/ts/ocl_test.hpp" |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
namespace opencv_test { |
|
namespace ocl { |
|
|
|
PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, int, bool, bool) |
|
{ |
|
int cn, normType, templateWindowSize, searchWindowSize; |
|
std::vector<float> h; |
|
bool use_roi, use_image; |
|
|
|
TEST_DECLARE_INPUT_PARAMETER(src); |
|
TEST_DECLARE_OUTPUT_PARAMETER(dst); |
|
|
|
virtual void SetUp() |
|
{ |
|
cn = GET_PARAM(0); |
|
normType = GET_PARAM(1); |
|
use_roi = GET_PARAM(2); |
|
use_image = GET_PARAM(3); |
|
|
|
templateWindowSize = 7; |
|
searchWindowSize = 21; |
|
|
|
h.resize(cn); |
|
for (int i=0; i<cn; i++) |
|
h[i] = 3.0f + 0.5f*i; |
|
} |
|
|
|
void generateTestData() |
|
{ |
|
const int type = CV_8UC(cn); |
|
Mat image; |
|
|
|
if (use_image) { |
|
image = readImage("denoising/lena_noised_gaussian_sigma=10.png", |
|
cn == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); |
|
ASSERT_FALSE(image.empty()); |
|
} |
|
|
|
Size roiSize = use_image ? image.size() : randomSize(1, MAX_VALUE); |
|
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); |
|
randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255); |
|
if (use_image) { |
|
ASSERT_TRUE(cn > 0 && cn <= 4); |
|
if (cn == 2) { |
|
int from_to[] = { 0,0, 1,1 }; |
|
src_roi.create(roiSize, type); |
|
mixChannels(&image, 1, &src_roi, 1, from_to, 2); |
|
} |
|
else if (cn == 4) { |
|
int from_to[] = { 0,0, 1,1, 2,2, 1,3}; |
|
src_roi.create(roiSize, type); |
|
mixChannels(&image, 1, &src_roi, 1, from_to, 4); |
|
} |
|
else image.copyTo(src_roi); |
|
} |
|
|
|
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0); |
|
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 0, 255); |
|
|
|
UMAT_UPLOAD_INPUT_PARAMETER(src); |
|
UMAT_UPLOAD_OUTPUT_PARAMETER(dst); |
|
} |
|
}; |
|
|
|
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising; |
|
|
|
OCL_TEST_P(FastNlMeansDenoising, Mat) |
|
{ |
|
for (int j = 0; j < test_loop_times; j++) |
|
{ |
|
generateTestData(); |
|
|
|
OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, std::vector<float>(1, h[0]), templateWindowSize, searchWindowSize, normType)); |
|
OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, std::vector<float>(1, h[0]), templateWindowSize, searchWindowSize, normType)); |
|
|
|
OCL_EXPECT_MATS_NEAR(dst, 1); |
|
} |
|
} |
|
|
|
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising_hsep; |
|
|
|
OCL_TEST_P(FastNlMeansDenoising_hsep, Mat) |
|
{ |
|
for (int j = 0; j < test_loop_times; j++) |
|
{ |
|
generateTestData(); |
|
|
|
OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, h, templateWindowSize, searchWindowSize, normType)); |
|
OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, h, templateWindowSize, searchWindowSize, normType)); |
|
|
|
OCL_EXPECT_MATS_NEAR(dst, 1); |
|
} |
|
} |
|
|
|
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoisingColored; |
|
|
|
OCL_TEST_P(FastNlMeansDenoisingColored, Mat) |
|
{ |
|
for (int j = 0; j < test_loop_times; j++) |
|
{ |
|
generateTestData(); |
|
|
|
OCL_OFF(cv::fastNlMeansDenoisingColored(src_roi, dst_roi, h[0], h[0], templateWindowSize, searchWindowSize)); |
|
OCL_ON(cv::fastNlMeansDenoisingColored(usrc_roi, udst_roi, h[0], h[0], templateWindowSize, searchWindowSize)); |
|
|
|
OCL_EXPECT_MATS_NEAR(dst, 1); |
|
} |
|
} |
|
|
|
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising, |
|
Combine(Values(1, 2, 3, 4), Values((int)NORM_L2, (int)NORM_L1), |
|
Bool(), Values(true))); |
|
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising_hsep, |
|
Combine(Values(1, 2, 3, 4), Values((int)NORM_L2, (int)NORM_L1), |
|
Bool(), Values(true))); |
|
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoisingColored, |
|
Combine(Values(3, 4), Values((int)NORM_L2), Bool(), Values(false))); |
|
|
|
} } // namespace opencv_test::ocl |
|
|
|
#endif // HAVE_OPENCL
|
|
|