mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
591 lines
17 KiB
591 lines
17 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2018 Intel Corporation |
|
|
|
|
|
#include "../test_precomp.hpp" |
|
#include <opencv2/gapi/own/mat.hpp> |
|
#include <opencv2/gapi/util/compiler_hints.hpp> //suppress_unused_warning |
|
|
|
namespace opencv_test |
|
{ |
|
using Mat = cv::gapi::own::Mat; |
|
using Dims = std::vector<int>; |
|
|
|
TEST(OwnMat, DefaultConstruction) |
|
{ |
|
Mat m; |
|
ASSERT_EQ(m.data, nullptr); |
|
ASSERT_EQ(m.cols, 0); |
|
ASSERT_EQ(m.rows, 0); |
|
ASSERT_EQ(m.cols, 0); |
|
ASSERT_EQ(m.type(), 0); |
|
ASSERT_EQ(m.depth(), 0); |
|
ASSERT_TRUE(m.dims.empty()); |
|
ASSERT_TRUE(m.empty()); |
|
} |
|
|
|
TEST(OwnMat, Create) |
|
{ |
|
auto size = cv::gapi::own::Size{32,16}; |
|
Mat m; |
|
m.create(size, CV_8UC1); |
|
|
|
ASSERT_NE(m.data, nullptr); |
|
ASSERT_EQ((cv::gapi::own::Size{m.cols, m.rows}), size); |
|
|
|
ASSERT_EQ(m.total(), static_cast<size_t>(size.height*size.width)); |
|
ASSERT_EQ(m.type(), CV_8UC1); |
|
ASSERT_EQ(m.depth(), CV_8U); |
|
ASSERT_EQ(m.channels(), 1); |
|
ASSERT_EQ(m.elemSize(), sizeof(uint8_t)); |
|
ASSERT_EQ(m.step, sizeof(uint8_t) * m.cols); |
|
ASSERT_TRUE(m.dims.empty()); |
|
ASSERT_FALSE(m.empty()); |
|
} |
|
|
|
TEST(OwnMat, CreateND) |
|
{ |
|
Dims dims = {1,1,32,32}; |
|
Mat m; |
|
m.create(dims, CV_32F); |
|
|
|
ASSERT_NE(nullptr , m.data ); |
|
ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{m.cols, m.rows})); |
|
|
|
ASSERT_EQ(static_cast<size_t>(dims[0]*dims[1]*dims[2]*dims[3]), m.total()); |
|
ASSERT_EQ(CV_32F , m.type() ); |
|
ASSERT_EQ(CV_32F , m.depth() ); |
|
ASSERT_EQ(-1 , m.channels()); |
|
ASSERT_EQ(sizeof(float) , m.elemSize()); |
|
ASSERT_EQ(0u , m.step ); |
|
ASSERT_EQ(dims , m.dims ); |
|
ASSERT_FALSE(m.empty()); |
|
} |
|
|
|
TEST(OwnMat, CreateOverload) |
|
{ |
|
auto size = cv::gapi::own::Size{32,16}; |
|
Mat m; |
|
m.create(size.height,size.width, CV_8UC1); |
|
|
|
ASSERT_NE(m.data, nullptr); |
|
ASSERT_EQ((cv::Size{m.cols, m.rows}), size); |
|
|
|
ASSERT_EQ(m.total(), static_cast<size_t>(size.height*size.width)); |
|
ASSERT_EQ(m.type(), CV_8UC1); |
|
ASSERT_EQ(m.depth(), CV_8U); |
|
ASSERT_EQ(m.channels(), 1); |
|
ASSERT_EQ(m.elemSize(), sizeof(uint8_t)); |
|
ASSERT_EQ(m.step, sizeof(uint8_t) * m.cols); |
|
ASSERT_TRUE(m.dims.empty()); |
|
ASSERT_FALSE(m.empty()); |
|
} |
|
|
|
TEST(OwnMat, Create3chan) |
|
{ |
|
auto size = cv::Size{32,16}; |
|
Mat m; |
|
m.create(size, CV_8UC3); |
|
|
|
ASSERT_NE(m.data, nullptr); |
|
ASSERT_EQ((cv::Size{m.cols, m.rows}), size); |
|
|
|
ASSERT_EQ(m.type(), CV_8UC3); |
|
ASSERT_EQ(m.depth(), CV_8U); |
|
ASSERT_EQ(m.channels(), 3); |
|
ASSERT_EQ(m.elemSize(), 3 * sizeof(uint8_t)); |
|
ASSERT_EQ(m.step, 3* sizeof(uint8_t) * m.cols); |
|
ASSERT_TRUE(m.dims.empty()); |
|
ASSERT_FALSE(m.empty()); |
|
} |
|
|
|
struct NonEmptyMat { |
|
cv::gapi::own::Size size{32,16}; |
|
Mat m; |
|
NonEmptyMat() { |
|
m.create(size, CV_8UC1); |
|
} |
|
}; |
|
|
|
struct OwnMatSharedSemantics : NonEmptyMat, ::testing::Test {}; |
|
|
|
|
|
namespace { |
|
auto state_of = [](Mat const& mat) { |
|
return std::make_tuple( |
|
mat.data, |
|
cv::Size{mat.cols, mat.rows}, |
|
mat.type(), |
|
mat.depth(), |
|
mat.channels(), |
|
mat.dims, |
|
mat.empty() |
|
); |
|
}; |
|
|
|
void ensure_mats_are_same(Mat const& copy, Mat const& m){ |
|
EXPECT_NE(copy.data, nullptr); |
|
EXPECT_EQ(state_of(copy), state_of(m)); |
|
} |
|
} |
|
TEST_F(OwnMatSharedSemantics, CopyConstruction) |
|
{ |
|
Mat copy(m); |
|
ensure_mats_are_same(copy, m); |
|
} |
|
|
|
TEST_F(OwnMatSharedSemantics, CopyAssignment) |
|
{ |
|
Mat copy; |
|
copy = m; |
|
ensure_mats_are_same(copy, m); |
|
} |
|
|
|
struct OwnMatMoveSemantics : NonEmptyMat, ::testing::Test { |
|
Mat& moved_from = m; |
|
decltype(state_of(moved_from)) initial_state = state_of(moved_from); |
|
|
|
void ensure_state_moved_to(Mat const& moved_to) |
|
{ |
|
EXPECT_EQ(state_of(moved_to), initial_state); |
|
EXPECT_EQ(state_of(moved_from), state_of(Mat{})); |
|
} |
|
}; |
|
|
|
TEST_F(OwnMatMoveSemantics, MoveConstruction) |
|
{ |
|
Mat moved_to(std::move(moved_from)); |
|
|
|
ensure_state_moved_to(moved_to); |
|
} |
|
|
|
TEST_F(OwnMatMoveSemantics, MoveAssignment) |
|
{ |
|
Mat moved_to(std::move(moved_from)); |
|
ensure_state_moved_to(moved_to); |
|
} |
|
|
|
struct OwnMatNonOwningView : NonEmptyMat, ::testing::Test { |
|
decltype(state_of(m)) initial_state = state_of(m); |
|
|
|
void TearDown() override { |
|
EXPECT_EQ(state_of(m), initial_state)<<"State of the source matrix changed?"; |
|
//ASAN should complain here if memory is freed here (e.g. by bug in non owning logic of own::Mat) |
|
volatile uchar dummy = m.data[0]; |
|
cv::util::suppress_unused_warning(dummy); |
|
} |
|
|
|
}; |
|
|
|
TEST_F(OwnMatNonOwningView, Construction) |
|
{ |
|
Mat non_owning_view(m.rows, m.cols, m.type(), static_cast<void*>(m.data)); |
|
|
|
ensure_mats_are_same(non_owning_view, m); |
|
} |
|
|
|
TEST_F(OwnMatNonOwningView, CopyConstruction) |
|
{ |
|
Mat non_owning_view{m.rows, m.cols, m.type(), static_cast<void*>(m.data)}; |
|
|
|
Mat non_owning_view_copy = non_owning_view; |
|
ensure_mats_are_same(non_owning_view_copy, m); |
|
} |
|
|
|
TEST_F(OwnMatNonOwningView, Assignment) |
|
{ |
|
Mat non_owning_view{m.rows, m.cols, m.type(), static_cast<void*>(m.data)}; |
|
Mat non_owning_view_copy; |
|
|
|
non_owning_view_copy = non_owning_view; |
|
ensure_mats_are_same(non_owning_view_copy, m); |
|
} |
|
|
|
TEST(OwnMatConversion, WithStep) |
|
{ |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<int, height * stepInPixels> data; |
|
for (size_t i = 0; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<int>(i); |
|
} |
|
cv::Mat cvMat(cv::Size{width, height}, CV_32S, data.data(), stepInPixels * sizeof(int)); |
|
|
|
auto ownMat = to_own(cvMat); |
|
auto cvMatFromOwn = cv::gapi::own::to_ocv(ownMat); |
|
|
|
EXPECT_EQ(0, cv::countNonZero(cvMat != cvMatFromOwn)) |
|
<< cvMat << std::endl |
|
<< (cvMat != cvMatFromOwn); |
|
} |
|
|
|
TEST(OwnMatConversion, WithND) |
|
{ |
|
const Dims dims = {1,3,8,8}; |
|
std::vector<uint8_t> data(dims[0]*dims[1]*dims[2]*dims[3]); |
|
for (size_t i = 0u; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<uint8_t>(i); |
|
} |
|
cv::Mat cvMat(dims, CV_8U, data.data()); |
|
auto ownMat = to_own(cvMat); |
|
auto cvMatFromOwn = cv::gapi::own::to_ocv(ownMat); |
|
|
|
EXPECT_EQ(0, cv::norm(cvMat, cvMatFromOwn, NORM_INF)) |
|
<< cvMat << std::endl |
|
<< (cvMat != cvMatFromOwn); |
|
} |
|
|
|
TEST(OwnMat, PtrWithStep) |
|
{ |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<int, height * stepInPixels> data; |
|
for (size_t i = 0; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<int>(i); |
|
} |
|
Mat mat(height, width, CV_32S, data.data(), stepInPixels * sizeof(int)); |
|
|
|
EXPECT_EQ(& data[0], reinterpret_cast<int*>(mat.ptr(0))); |
|
EXPECT_EQ(& data[1], reinterpret_cast<int*>(mat.ptr(0, 1))); |
|
EXPECT_EQ(& data[stepInPixels], reinterpret_cast<int*>(mat.ptr(1))); |
|
EXPECT_EQ(& data[stepInPixels +1], reinterpret_cast<int*>(mat.ptr(1,1))); |
|
|
|
auto const& cmat = mat; |
|
|
|
EXPECT_EQ(& data[0], reinterpret_cast<const int*>(cmat.ptr(0))); |
|
EXPECT_EQ(& data[1], reinterpret_cast<const int*>(cmat.ptr(0, 1))); |
|
EXPECT_EQ(& data[stepInPixels], reinterpret_cast<const int*>(cmat.ptr(1))); |
|
EXPECT_EQ(& data[stepInPixels +1], reinterpret_cast<const int*>(cmat.ptr(1,1))); |
|
} |
|
|
|
TEST(OwnMat, CopyToWithStep) |
|
{ |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<int, height * stepInPixels> data; |
|
for (size_t i = 0; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<int>(i); |
|
} |
|
Mat mat(height, width, CV_32S, data.data(), stepInPixels * sizeof(int)); |
|
|
|
Mat dst; |
|
mat.copyTo(dst); |
|
|
|
EXPECT_NE(mat.data, dst.data); |
|
EXPECT_EQ(0, cv::countNonZero(to_ocv(mat) != to_ocv(dst))) |
|
<< to_ocv(mat) << std::endl |
|
<< (to_ocv(mat) != to_ocv(dst)); |
|
} |
|
|
|
TEST(OwnMat, AssignNDtoRegular) |
|
{ |
|
const auto sz = cv::gapi::own::Size{32,32}; |
|
const auto dims = Dims{1,3,224,224}; |
|
|
|
Mat a; |
|
a.create(sz, CV_8U); |
|
const auto *old_ptr = a.data; |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(sz.width*sz.height), a.total()); |
|
ASSERT_EQ(CV_8U , a.type()); |
|
ASSERT_EQ(CV_8U , a.depth()); |
|
ASSERT_EQ(1 , a.channels()); |
|
ASSERT_EQ(sizeof(uint8_t), a.elemSize()); |
|
ASSERT_EQ(static_cast<size_t>(sz.width), a.step); |
|
ASSERT_TRUE(a.dims.empty()); |
|
|
|
Mat b; |
|
b.create(dims, CV_32F); |
|
a = b; |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_NE(old_ptr , a.data); |
|
ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(dims[0]*dims[1]*dims[2]*dims[3]), a.total()); |
|
ASSERT_EQ(CV_32F , a.type()); |
|
ASSERT_EQ(CV_32F , a.depth()); |
|
ASSERT_EQ(-1 , a.channels()); |
|
ASSERT_EQ(sizeof(float), a.elemSize()); |
|
ASSERT_EQ(0u , a.step); |
|
ASSERT_EQ(dims , a.dims); |
|
} |
|
|
|
TEST(OwnMat, AssignRegularToND) |
|
{ |
|
const auto sz = cv::gapi::own::Size{32,32}; |
|
const auto dims = Dims{1,3,224,224}; |
|
|
|
Mat a; |
|
a.create(dims, CV_32F); |
|
const auto *old_ptr = a.data; |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(dims[0]*dims[1]*dims[2]*dims[3]), a.total()); |
|
ASSERT_EQ(CV_32F , a.type()); |
|
ASSERT_EQ(CV_32F , a.depth()); |
|
ASSERT_EQ(-1 , a.channels()); |
|
ASSERT_EQ(sizeof(float), a.elemSize()); |
|
ASSERT_EQ(0u , a.step); |
|
ASSERT_EQ(dims , a.dims); |
|
|
|
Mat b; |
|
b.create(sz, CV_8U); |
|
a = b; |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_NE(old_ptr , a.data); |
|
ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(sz.width*sz.height), a.total()); |
|
ASSERT_EQ(CV_8U , a.type()); |
|
ASSERT_EQ(CV_8U , a.depth()); |
|
ASSERT_EQ(1 , a.channels()); |
|
ASSERT_EQ(sizeof(uint8_t), a.elemSize()); |
|
ASSERT_EQ(static_cast<size_t>(sz.width), a.step); |
|
ASSERT_TRUE(a.dims.empty()); |
|
} |
|
|
|
TEST(OwnMat, CopyNDtoRegular) |
|
{ |
|
const auto sz = cv::gapi::own::Size{32,32}; |
|
const auto dims = Dims{1,3,224,224}; |
|
|
|
Mat a; |
|
a.create(sz, CV_8U); |
|
const auto *old_ptr = a.data; |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(sz.width*sz.height), a.total()); |
|
ASSERT_EQ(CV_8U , a.type()); |
|
ASSERT_EQ(CV_8U , a.depth()); |
|
ASSERT_EQ(1 , a.channels()); |
|
ASSERT_EQ(sizeof(uint8_t), a.elemSize()); |
|
ASSERT_EQ(static_cast<size_t>(sz.width), a.step); |
|
ASSERT_TRUE(a.dims.empty()); |
|
|
|
Mat b; |
|
b.create(dims, CV_32F); |
|
b.copyTo(a); |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_NE(old_ptr , a.data); |
|
ASSERT_NE(b.data , a.data); |
|
ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(dims[0]*dims[1]*dims[2]*dims[3]), a.total()); |
|
ASSERT_EQ(CV_32F , a.type()); |
|
ASSERT_EQ(CV_32F , a.depth()); |
|
ASSERT_EQ(-1 , a.channels()); |
|
ASSERT_EQ(sizeof(float), a.elemSize()); |
|
ASSERT_EQ(0u , a.step); |
|
ASSERT_EQ(dims , a.dims); |
|
} |
|
|
|
TEST(OwnMat, CopyRegularToND) |
|
{ |
|
const auto sz = cv::gapi::own::Size{32,32}; |
|
const auto dims = Dims{1,3,224,224}; |
|
|
|
Mat a; |
|
a.create(dims, CV_32F); |
|
const auto *old_ptr = a.data; |
|
|
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_EQ((cv::gapi::own::Size{0,0}), (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(dims[0]*dims[1]*dims[2]*dims[3]), a.total()); |
|
ASSERT_EQ(CV_32F , a.type()); |
|
ASSERT_EQ(CV_32F , a.depth()); |
|
ASSERT_EQ(-1 , a.channels()); |
|
ASSERT_EQ(sizeof(float), a.elemSize()); |
|
ASSERT_EQ(0u , a.step); |
|
ASSERT_EQ(dims , a.dims); |
|
|
|
Mat b; |
|
b.create(sz, CV_8U); |
|
b.copyTo(a); |
|
|
|
ASSERT_NE(nullptr , a.data); |
|
ASSERT_NE(old_ptr , a.data); |
|
ASSERT_NE(b.data , a.data); |
|
ASSERT_EQ(sz , (cv::gapi::own::Size{a.cols, a.rows})); |
|
ASSERT_EQ(static_cast<size_t>(sz.width*sz.height), a.total()); |
|
ASSERT_EQ(CV_8U , a.type()); |
|
ASSERT_EQ(CV_8U , a.depth()); |
|
ASSERT_EQ(1 , a.channels()); |
|
ASSERT_EQ(sizeof(uint8_t), a.elemSize()); |
|
ASSERT_EQ(static_cast<size_t>(sz.width), a.step); |
|
ASSERT_TRUE(a.dims.empty()); |
|
} |
|
|
|
TEST(OwnMat, ScalarAssign32SC1) |
|
{ |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<int, height * stepInPixels> data; |
|
for (size_t i = 0; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<int>(i); |
|
} |
|
Mat mat(height, width, CV_32S, data.data(), stepInPixels * sizeof(data[0])); |
|
|
|
mat = cv::gapi::own::Scalar{-1}; |
|
|
|
std::array<int, height * stepInPixels> expected; |
|
|
|
for (size_t row = 0; row < height; row++) |
|
{ |
|
for (size_t col = 0; col < stepInPixels; col++) |
|
{ |
|
auto index = row*stepInPixels + col; |
|
expected[index] = col < width ? -1 : static_cast<int>(index); |
|
} |
|
} |
|
|
|
auto cmp_result_mat = (cv::Mat{height, stepInPixels, CV_32S, data.data()} != cv::Mat{height, stepInPixels, CV_32S, expected.data()}); |
|
EXPECT_EQ(0, cv::countNonZero(cmp_result_mat)) |
|
<< cmp_result_mat << std::endl; |
|
} |
|
|
|
TEST(OwnMat, ScalarAssign8UC1) |
|
{ |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<uchar, height * stepInPixels> data; |
|
for (size_t i = 0; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<uchar>(i); |
|
} |
|
Mat mat(height, width, CV_8U, data.data(), stepInPixels * sizeof(data[0])); |
|
|
|
mat = cv::gapi::own::Scalar{-1}; |
|
|
|
std::array<uchar, height * stepInPixels> expected; |
|
|
|
for (size_t row = 0; row < height; row++) |
|
{ |
|
for (size_t col = 0; col < stepInPixels; col++) |
|
{ |
|
auto index = row*stepInPixels + col; |
|
expected[index] = col < width ? cv::saturate_cast<uchar>(-1) : static_cast<uchar>(index); |
|
} |
|
} |
|
|
|
auto cmp_result_mat = (cv::Mat{height, stepInPixels, CV_8U, data.data()} != cv::Mat{height, stepInPixels, CV_8U, expected.data()}); |
|
EXPECT_EQ(0, cv::countNonZero(cmp_result_mat)) |
|
<< cmp_result_mat << std::endl; |
|
} |
|
|
|
TEST(OwnMat, ScalarAssignND) |
|
{ |
|
std::vector<int> dims = {1,1000}; |
|
Mat m; |
|
m.create(dims, CV_32F); |
|
m = cv::gapi::own::Scalar{-1}; |
|
const float *ptr = reinterpret_cast<float*>(m.data); |
|
|
|
for (auto i = 0u; i < m.total(); i++) { |
|
EXPECT_EQ(-1.f, ptr[i]); |
|
} |
|
} |
|
|
|
TEST(OwnMat, ScalarAssign8UC3) |
|
{ |
|
constexpr auto cv_type = CV_8SC3; |
|
constexpr int channels = 3; |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<schar, height * stepInPixels * channels> data; |
|
for (size_t i = 0; i < data.size(); i+= channels) |
|
{ |
|
data[i + 0] = static_cast<schar>(10 * i + 0); |
|
data[i + 1] = static_cast<schar>(10 * i + 1); |
|
data[i + 2] = static_cast<schar>(10 * i + 2); |
|
} |
|
|
|
Mat mat(height, width, cv_type, data.data(), channels * stepInPixels * sizeof(data[0])); |
|
|
|
mat = cv::gapi::own::Scalar{-10, -11, -12}; |
|
|
|
std::array<schar, data.size()> expected; |
|
|
|
for (size_t row = 0; row < height; row++) |
|
{ |
|
for (size_t col = 0; col < stepInPixels; col++) |
|
{ |
|
int index = static_cast<int>(channels * (row*stepInPixels + col)); |
|
expected[index + 0] = static_cast<schar>(col < width ? -10 : 10 * index + 0); |
|
expected[index + 1] = static_cast<schar>(col < width ? -11 : 10 * index + 1); |
|
expected[index + 2] = static_cast<schar>(col < width ? -12 : 10 * index + 2); |
|
} |
|
} |
|
|
|
auto cmp_result_mat = (cv::Mat{height, stepInPixels, cv_type, data.data()} != cv::Mat{height, stepInPixels, cv_type, expected.data()}); |
|
EXPECT_EQ(0, cv::countNonZero(cmp_result_mat)) |
|
<< cmp_result_mat << std::endl |
|
<< "data : " << std::endl |
|
<< cv::Mat{height, stepInPixels, cv_type, data.data()} << std::endl |
|
<< "expected : " << std::endl |
|
<< cv::Mat{height, stepInPixels, cv_type, expected.data()} << std::endl; |
|
} |
|
|
|
TEST(OwnMat, ROIView) |
|
{ |
|
constexpr int width = 8; |
|
constexpr int height = 8; |
|
constexpr int stepInPixels = 16; |
|
|
|
std::array<uchar, height * stepInPixels> data; |
|
for (size_t i = 0; i < data.size(); i++) |
|
{ |
|
data[i] = static_cast<uchar>(i); |
|
} |
|
|
|
|
|
// std::cout<<cv::Mat{height, stepInPixels, CV_8U, data.data()}<<std::endl; |
|
|
|
std::array<uchar, 4 * 4> expected; |
|
|
|
for (size_t row = 0; row < 4; row++) |
|
{ |
|
for (size_t col = 0; col < 4; col++) |
|
{ |
|
expected[row*4 +col] = static_cast<uchar>(stepInPixels * (2 + row) + 2 + col); |
|
} |
|
} |
|
|
|
Mat mat(height, width, CV_8U, data.data(), stepInPixels * sizeof(data[0])); |
|
Mat roi_view (mat, cv::gapi::own::Rect{2,2,4,4}); |
|
|
|
// std::cout<<cv::Mat{4, 4, CV_8U, expected.data()}<<std::endl; |
|
// |
|
auto expected_cv_mat = cv::Mat{4, 4, CV_8U, expected.data()}; |
|
|
|
auto cmp_result_mat = (to_ocv(roi_view) != expected_cv_mat); |
|
EXPECT_EQ(0, cv::countNonZero(cmp_result_mat)) |
|
<< cmp_result_mat << std::endl |
|
<< to_ocv(roi_view) << std::endl |
|
<< expected_cv_mat << std::endl; |
|
} |
|
} // namespace opencv_test
|
|
|