mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
44 lines
1.1 KiB
44 lines
1.1 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Texture flow direction estimation. |
|
|
|
Sample shows how cv2.cornerEigenValsAndVecs function can be used |
|
to estimate image texture flow direction. |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 |
|
import sys |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
|
|
class texture_flow_test(NewOpenCVTests): |
|
|
|
def test_texture_flow(self): |
|
|
|
img = self.get_sample('samples/data/chessboard.png') |
|
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
h, w = img.shape[:2] |
|
|
|
eigen = cv2.cornerEigenValsAndVecs(gray, 5, 3) |
|
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2] |
|
flow = eigen[:,:,2] |
|
|
|
d = 300 |
|
eps = d / 30 |
|
|
|
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2) |
|
|
|
textureVectors = [] |
|
for x, y in np.int32(points): |
|
textureVectors.append(np.int32(flow[y, x]*d)) |
|
|
|
for i in range(len(textureVectors)): |
|
self.assertTrue(cv2.norm(textureVectors[i], cv2.NORM_L2) < eps |
|
or abs(cv2.norm(textureVectors[i], cv2.NORM_L2) - d) < eps)
|
|
|