mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
1.6 KiB
66 lines
1.6 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Robust line fitting. |
|
================== |
|
|
|
Example of using cv2.fitLine function for fitting line |
|
to points in presence of outliers. |
|
|
|
Switch through different M-estimator functions and see, |
|
how well the robust functions fit the line even |
|
in case of ~50% of outliers. |
|
|
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
import sys |
|
PY3 = sys.version_info[0] == 3 |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
from tests_common import NewOpenCVTests |
|
|
|
w, h = 512, 256 |
|
|
|
def toint(p): |
|
return tuple(map(int, p)) |
|
|
|
def sample_line(p1, p2, n, noise=0.0): |
|
np.random.seed(10) |
|
p1 = np.float32(p1) |
|
t = np.random.rand(n,1) |
|
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise |
|
|
|
dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER'] |
|
|
|
class fitline_test(NewOpenCVTests): |
|
|
|
def test_fitline(self): |
|
|
|
noise = 5 |
|
n = 200 |
|
r = 5 / 100.0 |
|
outn = int(n*r) |
|
|
|
p0, p1 = (90, 80), (w-90, h-80) |
|
line_points = sample_line(p0, p1, n-outn, noise) |
|
outliers = np.random.rand(outn, 2) * (w, h) |
|
points = np.vstack([line_points, outliers]) |
|
|
|
lines = [] |
|
|
|
for name in dist_func_names: |
|
func = getattr(cv2, name) |
|
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01) |
|
line = [float(vx), float(vy), float(cx), float(cy)] |
|
lines.append(line) |
|
|
|
eps = 0.05 |
|
|
|
refVec = (np.float32(p1) - p0) / cv2.norm(np.float32(p1) - p0) |
|
|
|
for i in range(len(lines)): |
|
self.assertLessEqual(cv2.norm(refVec - lines[i][0:2], cv2.NORM_L2), eps) |