Open Source Computer Vision Library
https://opencv.org/
434 lines
14 KiB
434 lines
14 KiB
#ifndef __OPENCV_FEATURES_2D_MANUAL_HPP__ |
|
#define __OPENCV_FEATURES_2D_MANUAL_HPP__ |
|
|
|
#include "opencv2/opencv_modules.hpp" |
|
|
|
#ifdef HAVE_OPENCV_FEATURES2D |
|
#include "opencv2/features2d.hpp" |
|
#include "features2d_converters.hpp" |
|
|
|
#undef SIMPLEBLOB // to solve conflict with wincrypt.h on windows |
|
|
|
namespace cv |
|
{ |
|
|
|
class CV_EXPORTS_AS(FeatureDetector) javaFeatureDetector |
|
{ |
|
public: |
|
CV_WRAP void detect( const Mat& image, CV_OUT std::vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const |
|
{ return wrapped->detect(image, keypoints, mask); } |
|
|
|
CV_WRAP void detect( const std::vector<Mat>& images, CV_OUT std::vector<std::vector<KeyPoint> >& keypoints, const std::vector<Mat>& masks=std::vector<Mat>() ) const |
|
{ return wrapped->detect(images, keypoints, masks); } |
|
|
|
CV_WRAP bool empty() const |
|
{ return wrapped->empty(); } |
|
|
|
enum |
|
{ |
|
FAST = 1, |
|
STAR = 2, |
|
SIFT = 3, |
|
SURF = 4, |
|
ORB = 5, |
|
MSER = 6, |
|
GFTT = 7, |
|
HARRIS = 8, |
|
SIMPLEBLOB = 9, |
|
DENSE = 10, |
|
BRISK = 11, |
|
AKAZE = 12, |
|
|
|
|
|
GRIDDETECTOR = 1000, |
|
|
|
GRID_FAST = GRIDDETECTOR + FAST, |
|
GRID_STAR = GRIDDETECTOR + STAR, |
|
GRID_SIFT = GRIDDETECTOR + SIFT, |
|
GRID_SURF = GRIDDETECTOR + SURF, |
|
GRID_ORB = GRIDDETECTOR + ORB, |
|
GRID_MSER = GRIDDETECTOR + MSER, |
|
GRID_GFTT = GRIDDETECTOR + GFTT, |
|
GRID_HARRIS = GRIDDETECTOR + HARRIS, |
|
GRID_SIMPLEBLOB = GRIDDETECTOR + SIMPLEBLOB, |
|
GRID_DENSE = GRIDDETECTOR + DENSE, |
|
GRID_BRISK = GRIDDETECTOR + BRISK, |
|
GRID_AKAZE = GRIDDETECTOR + AKAZE, |
|
|
|
|
|
PYRAMIDDETECTOR = 2000, |
|
|
|
PYRAMID_FAST = PYRAMIDDETECTOR + FAST, |
|
PYRAMID_STAR = PYRAMIDDETECTOR + STAR, |
|
PYRAMID_SIFT = PYRAMIDDETECTOR + SIFT, |
|
PYRAMID_SURF = PYRAMIDDETECTOR + SURF, |
|
PYRAMID_ORB = PYRAMIDDETECTOR + ORB, |
|
PYRAMID_MSER = PYRAMIDDETECTOR + MSER, |
|
PYRAMID_GFTT = PYRAMIDDETECTOR + GFTT, |
|
PYRAMID_HARRIS = PYRAMIDDETECTOR + HARRIS, |
|
PYRAMID_SIMPLEBLOB = PYRAMIDDETECTOR + SIMPLEBLOB, |
|
PYRAMID_DENSE = PYRAMIDDETECTOR + DENSE, |
|
PYRAMID_BRISK = PYRAMIDDETECTOR + BRISK, |
|
PYRAMID_AKAZE = PYRAMIDDETECTOR + AKAZE, |
|
|
|
DYNAMICDETECTOR = 3000, |
|
|
|
DYNAMIC_FAST = DYNAMICDETECTOR + FAST, |
|
DYNAMIC_STAR = DYNAMICDETECTOR + STAR, |
|
DYNAMIC_SIFT = DYNAMICDETECTOR + SIFT, |
|
DYNAMIC_SURF = DYNAMICDETECTOR + SURF, |
|
DYNAMIC_ORB = DYNAMICDETECTOR + ORB, |
|
DYNAMIC_MSER = DYNAMICDETECTOR + MSER, |
|
DYNAMIC_GFTT = DYNAMICDETECTOR + GFTT, |
|
DYNAMIC_HARRIS = DYNAMICDETECTOR + HARRIS, |
|
DYNAMIC_SIMPLEBLOB = DYNAMICDETECTOR + SIMPLEBLOB, |
|
DYNAMIC_DENSE = DYNAMICDETECTOR + DENSE, |
|
DYNAMIC_BRISK = DYNAMICDETECTOR + BRISK, |
|
DYNAMIC_AKAZE = DYNAMICDETECTOR + AKAZE |
|
}; |
|
|
|
//supported: FAST STAR SIFT SURF ORB MSER GFTT HARRIS BRISK AKAZE Grid(XXXX) Pyramid(XXXX) Dynamic(XXXX) |
|
//not supported: SimpleBlob, Dense |
|
CV_WRAP static javaFeatureDetector* create( int detectorType ) |
|
{ |
|
//String name; |
|
if (detectorType > DYNAMICDETECTOR) |
|
{ |
|
//name = "Dynamic"; |
|
detectorType -= DYNAMICDETECTOR; |
|
} |
|
if (detectorType > PYRAMIDDETECTOR) |
|
{ |
|
//name = "Pyramid"; |
|
detectorType -= PYRAMIDDETECTOR; |
|
} |
|
if (detectorType > GRIDDETECTOR) |
|
{ |
|
//name = "Grid"; |
|
detectorType -= GRIDDETECTOR; |
|
} |
|
|
|
Ptr<FeatureDetector> fd; |
|
switch(detectorType) |
|
{ |
|
case FAST: |
|
fd = FastFeatureDetector::create(); |
|
break; |
|
//case STAR: |
|
// fd = xfeatures2d::StarDetector::create(); |
|
// break; |
|
//case SIFT: |
|
// name = name + "SIFT"; |
|
// break; |
|
//case SURF: |
|
// name = name + "SURF"; |
|
// break; |
|
case ORB: |
|
fd = ORB::create(); |
|
break; |
|
case MSER: |
|
fd = MSER::create(); |
|
break; |
|
case GFTT: |
|
fd = GFTTDetector::create(); |
|
break; |
|
case HARRIS: |
|
{ |
|
Ptr<GFTTDetector> gftt = GFTTDetector::create(); |
|
gftt->setHarrisDetector(true); |
|
fd = gftt; |
|
} |
|
break; |
|
case SIMPLEBLOB: |
|
fd = SimpleBlobDetector::create(); |
|
break; |
|
//case DENSE: |
|
// name = name + "Dense"; |
|
// break; |
|
case BRISK: |
|
fd = BRISK::create(); |
|
break; |
|
case AKAZE: |
|
fd = AKAZE::create(); |
|
break; |
|
default: |
|
CV_Error( Error::StsBadArg, "Specified feature detector type is not supported." ); |
|
break; |
|
} |
|
|
|
return new javaFeatureDetector(fd); |
|
} |
|
|
|
CV_WRAP void write( const String& fileName ) const |
|
{ |
|
FileStorage fs(fileName, FileStorage::WRITE); |
|
wrapped->write(fs); |
|
} |
|
|
|
CV_WRAP void read( const String& fileName ) |
|
{ |
|
FileStorage fs(fileName, FileStorage::READ); |
|
wrapped->read(fs.root()); |
|
} |
|
|
|
private: |
|
javaFeatureDetector(Ptr<FeatureDetector> _wrapped) : wrapped(_wrapped) |
|
{} |
|
|
|
Ptr<FeatureDetector> wrapped; |
|
}; |
|
|
|
class CV_EXPORTS_AS(DescriptorMatcher) javaDescriptorMatcher |
|
{ |
|
public: |
|
CV_WRAP bool isMaskSupported() const |
|
{ return wrapped->isMaskSupported(); } |
|
|
|
CV_WRAP void add( const std::vector<Mat>& descriptors ) |
|
{ return wrapped->add(descriptors); } |
|
|
|
CV_WRAP const std::vector<Mat>& getTrainDescriptors() const |
|
{ return wrapped->getTrainDescriptors(); } |
|
|
|
CV_WRAP void clear() |
|
{ return wrapped->clear(); } |
|
|
|
CV_WRAP bool empty() const |
|
{ return wrapped->empty(); } |
|
|
|
CV_WRAP void train() |
|
{ return wrapped->train(); } |
|
|
|
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const |
|
{ return wrapped->match(queryDescriptors, trainDescriptors, matches, mask); } |
|
|
|
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
CV_OUT std::vector<std::vector<DMatch> >& matches, int k, |
|
const Mat& mask=Mat(), bool compactResult=false ) const |
|
{ return wrapped->knnMatch(queryDescriptors, trainDescriptors, matches, k, mask, compactResult); } |
|
|
|
CV_WRAP void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, |
|
CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, |
|
const Mat& mask=Mat(), bool compactResult=false ) const |
|
{ return wrapped->radiusMatch(queryDescriptors, trainDescriptors, matches, maxDistance, mask, compactResult); } |
|
|
|
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT std::vector<DMatch>& matches, |
|
const std::vector<Mat>& masks=std::vector<Mat>() ) |
|
{ return wrapped->match(queryDescriptors, matches, masks); } |
|
|
|
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k, |
|
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false ) |
|
{ return wrapped->knnMatch(queryDescriptors, matches, k, masks, compactResult); } |
|
|
|
CV_WRAP void radiusMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance, |
|
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false ) |
|
{ return wrapped->radiusMatch(queryDescriptors, matches, maxDistance, masks, compactResult); } |
|
|
|
enum |
|
{ |
|
FLANNBASED = 1, |
|
BRUTEFORCE = 2, |
|
BRUTEFORCE_L1 = 3, |
|
BRUTEFORCE_HAMMING = 4, |
|
BRUTEFORCE_HAMMINGLUT = 5, |
|
BRUTEFORCE_SL2 = 6 |
|
}; |
|
|
|
CV_WRAP_AS(clone) javaDescriptorMatcher* jclone( bool emptyTrainData=false ) const |
|
{ |
|
return new javaDescriptorMatcher(wrapped->clone(emptyTrainData)); |
|
} |
|
|
|
//supported: FlannBased, BruteForce, BruteForce-L1, BruteForce-Hamming, BruteForce-HammingLUT |
|
CV_WRAP static javaDescriptorMatcher* create( int matcherType ) |
|
{ |
|
String name; |
|
|
|
switch(matcherType) |
|
{ |
|
case FLANNBASED: |
|
name = "FlannBased"; |
|
break; |
|
case BRUTEFORCE: |
|
name = "BruteForce"; |
|
break; |
|
case BRUTEFORCE_L1: |
|
name = "BruteForce-L1"; |
|
break; |
|
case BRUTEFORCE_HAMMING: |
|
name = "BruteForce-Hamming"; |
|
break; |
|
case BRUTEFORCE_HAMMINGLUT: |
|
name = "BruteForce-HammingLUT"; |
|
break; |
|
case BRUTEFORCE_SL2: |
|
name = "BruteForce-SL2"; |
|
break; |
|
default: |
|
CV_Error( Error::StsBadArg, "Specified descriptor matcher type is not supported." ); |
|
break; |
|
} |
|
|
|
return new javaDescriptorMatcher(DescriptorMatcher::create(name)); |
|
} |
|
|
|
CV_WRAP void write( const String& fileName ) const |
|
{ |
|
FileStorage fs(fileName, FileStorage::WRITE); |
|
wrapped->write(fs); |
|
} |
|
|
|
CV_WRAP void read( const String& fileName ) |
|
{ |
|
FileStorage fs(fileName, FileStorage::READ); |
|
wrapped->read(fs.root()); |
|
} |
|
|
|
private: |
|
javaDescriptorMatcher(Ptr<DescriptorMatcher> _wrapped) : wrapped(_wrapped) |
|
{} |
|
|
|
Ptr<DescriptorMatcher> wrapped; |
|
}; |
|
|
|
class CV_EXPORTS_AS(DescriptorExtractor) javaDescriptorExtractor |
|
{ |
|
public: |
|
CV_WRAP void compute( const Mat& image, CV_IN_OUT std::vector<KeyPoint>& keypoints, Mat& descriptors ) const |
|
{ return wrapped->compute(image, keypoints, descriptors); } |
|
|
|
CV_WRAP void compute( const std::vector<Mat>& images, CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints, CV_OUT std::vector<Mat>& descriptors ) const |
|
{ return wrapped->compute(images, keypoints, descriptors); } |
|
|
|
CV_WRAP int descriptorSize() const |
|
{ return wrapped->descriptorSize(); } |
|
|
|
CV_WRAP int descriptorType() const |
|
{ return wrapped->descriptorType(); } |
|
|
|
CV_WRAP bool empty() const |
|
{ return wrapped->empty(); } |
|
|
|
enum |
|
{ |
|
SIFT = 1, |
|
SURF = 2, |
|
ORB = 3, |
|
BRIEF = 4, |
|
BRISK = 5, |
|
FREAK = 6, |
|
AKAZE = 7, |
|
|
|
|
|
OPPONENTEXTRACTOR = 1000, |
|
|
|
|
|
|
|
OPPONENT_SIFT = OPPONENTEXTRACTOR + SIFT, |
|
OPPONENT_SURF = OPPONENTEXTRACTOR + SURF, |
|
OPPONENT_ORB = OPPONENTEXTRACTOR + ORB, |
|
OPPONENT_BRIEF = OPPONENTEXTRACTOR + BRIEF, |
|
OPPONENT_BRISK = OPPONENTEXTRACTOR + BRISK, |
|
OPPONENT_FREAK = OPPONENTEXTRACTOR + FREAK, |
|
OPPONENT_AKAZE = OPPONENTEXTRACTOR + AKAZE |
|
}; |
|
|
|
//supported SIFT, SURF, ORB, BRIEF, BRISK, FREAK, AKAZE, Opponent(XXXX) |
|
//not supported: Calonder |
|
CV_WRAP static javaDescriptorExtractor* create( int extractorType ) |
|
{ |
|
//String name; |
|
|
|
if (extractorType > OPPONENTEXTRACTOR) |
|
{ |
|
//name = "Opponent"; |
|
extractorType -= OPPONENTEXTRACTOR; |
|
} |
|
|
|
Ptr<DescriptorExtractor> de; |
|
switch(extractorType) |
|
{ |
|
//case SIFT: |
|
// name = name + "SIFT"; |
|
// break; |
|
//case SURF: |
|
// name = name + "SURF"; |
|
// break; |
|
case ORB: |
|
de = ORB::create(); |
|
break; |
|
//case BRIEF: |
|
// name = name + "BRIEF"; |
|
// break; |
|
case BRISK: |
|
de = BRISK::create(); |
|
break; |
|
//case FREAK: |
|
// name = name + "FREAK"; |
|
// break; |
|
case AKAZE: |
|
de = AKAZE::create(); |
|
break; |
|
default: |
|
CV_Error( Error::StsBadArg, "Specified descriptor extractor type is not supported." ); |
|
break; |
|
} |
|
|
|
return new javaDescriptorExtractor(de); |
|
} |
|
|
|
CV_WRAP void write( const String& fileName ) const |
|
{ |
|
FileStorage fs(fileName, FileStorage::WRITE); |
|
wrapped->write(fs); |
|
} |
|
|
|
CV_WRAP void read( const String& fileName ) |
|
{ |
|
FileStorage fs(fileName, FileStorage::READ); |
|
wrapped->read(fs.root()); |
|
} |
|
|
|
private: |
|
javaDescriptorExtractor(Ptr<DescriptorExtractor> _wrapped) : wrapped(_wrapped) |
|
{} |
|
|
|
Ptr<DescriptorExtractor> wrapped; |
|
}; |
|
|
|
#if 0 |
|
//DO NOT REMOVE! The block is required for sources parser |
|
enum |
|
{ |
|
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create). |
|
// Matches will be drawn on existing content of output image. |
|
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn. |
|
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and |
|
// orientation will be drawn. |
|
}; |
|
|
|
// Draw keypoints. |
|
CV_EXPORTS_W void drawKeypoints( const Mat& image, const std::vector<KeyPoint>& keypoints, Mat& outImage, |
|
const Scalar& color=Scalar::all(-1), int flags=0 ); |
|
|
|
// Draws matches of keypints from two images on output image. |
|
CV_EXPORTS_W void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1, |
|
const Mat& img2, const std::vector<KeyPoint>& keypoints2, |
|
const std::vector<DMatch>& matches1to2, Mat& outImg, |
|
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), |
|
const std::vector<char>& matchesMask=std::vector<char>(), int flags=0 ); |
|
|
|
CV_EXPORTS_AS(drawMatches2) void drawMatches( const Mat& img1, const std::vector<KeyPoint>& keypoints1, |
|
const Mat& img2, const std::vector<KeyPoint>& keypoints2, |
|
const std::vector<std::vector<DMatch> >& matches1to2, Mat& outImg, |
|
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), |
|
const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=0); |
|
|
|
#endif |
|
|
|
} //cv |
|
|
|
#endif // HAVE_OPENCV_FEATURES2D |
|
|
|
#endif // __OPENCV_FEATURES_2D_MANUAL_HPP__
|
|
|