mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
127 lines
4.5 KiB
127 lines
4.5 KiB
/* |
|
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved. |
|
* |
|
* NVIDIA Corporation and its licensors retain all intellectual |
|
* property and proprietary rights in and to this software and |
|
* related documentation and any modifications thereto. |
|
* Any use, reproduction, disclosure, or distribution of this |
|
* software and related documentation without an express license |
|
* agreement from NVIDIA Corporation is strictly prohibited. |
|
*/ |
|
|
|
#if !defined CUDA_DISABLER |
|
|
|
#include "TestHaarCascadeLoader.h" |
|
#include "NCVHaarObjectDetection.hpp" |
|
|
|
|
|
TestHaarCascadeLoader::TestHaarCascadeLoader(std::string testName_, std::string cascadeName_) |
|
: |
|
NCVTestProvider(testName_), |
|
cascadeName(cascadeName_) |
|
{ |
|
} |
|
|
|
|
|
bool TestHaarCascadeLoader::toString(std::ofstream &strOut) |
|
{ |
|
strOut << "cascadeName=" << cascadeName << std::endl; |
|
return true; |
|
} |
|
|
|
|
|
bool TestHaarCascadeLoader::init() |
|
{ |
|
return true; |
|
} |
|
|
|
|
|
bool TestHaarCascadeLoader::process() |
|
{ |
|
NCVStatus ncvStat; |
|
bool rcode = false; |
|
|
|
Ncv32u numStages, numNodes, numFeatures; |
|
Ncv32u numStages_2 = 0, numNodes_2 = 0, numFeatures_2 = 0; |
|
|
|
ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages); |
|
ncvAssertReturn(h_HaarStages.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes); |
|
ncvAssertReturn(h_HaarNodes.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures); |
|
ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false); |
|
|
|
NCVVectorAlloc<HaarStage64> h_HaarStages_2(*this->allocatorCPU.get(), numStages); |
|
ncvAssertReturn(h_HaarStages_2.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes_2(*this->allocatorCPU.get(), numNodes); |
|
ncvAssertReturn(h_HaarNodes_2.isMemAllocated(), false); |
|
NCVVectorAlloc<HaarFeature64> h_HaarFeatures_2(*this->allocatorCPU.get(), numFeatures); |
|
ncvAssertReturn(h_HaarFeatures_2.isMemAllocated(), false); |
|
|
|
HaarClassifierCascadeDescriptor haar; |
|
HaarClassifierCascadeDescriptor haar_2; |
|
|
|
NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); |
|
NCV_SKIP_COND_BEGIN |
|
|
|
const std::string testNvbinName = "test.nvbin"; |
|
ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
ncvStat = ncvHaarStoreNVBIN_host(testNvbinName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
ncvStat = ncvHaarGetClassifierSize(testNvbinName, numStages_2, numNodes_2, numFeatures_2); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
ncvStat = ncvHaarLoadFromFile_host(testNvbinName, haar_2, h_HaarStages_2, h_HaarNodes_2, h_HaarFeatures_2); |
|
ncvAssertReturn(ncvStat == NCV_SUCCESS, false); |
|
|
|
NCV_SKIP_COND_END |
|
|
|
//bit-to-bit check |
|
bool bLoopVirgin = true; |
|
|
|
NCV_SKIP_COND_BEGIN |
|
|
|
if ( |
|
numStages_2 != numStages || |
|
numNodes_2 != numNodes || |
|
numFeatures_2 != numFeatures || |
|
haar.NumStages != haar_2.NumStages || |
|
haar.NumClassifierRootNodes != haar_2.NumClassifierRootNodes || |
|
haar.NumClassifierTotalNodes != haar_2.NumClassifierTotalNodes || |
|
haar.NumFeatures != haar_2.NumFeatures || |
|
haar.ClassifierSize.width != haar_2.ClassifierSize.width || |
|
haar.ClassifierSize.height != haar_2.ClassifierSize.height || |
|
haar.bNeedsTiltedII != haar_2.bNeedsTiltedII || |
|
haar.bHasStumpsOnly != haar_2.bHasStumpsOnly ) |
|
{ |
|
bLoopVirgin = false; |
|
} |
|
if (memcmp(h_HaarStages.ptr(), h_HaarStages_2.ptr(), haar.NumStages * sizeof(HaarStage64)) || |
|
memcmp(h_HaarNodes.ptr(), h_HaarNodes_2.ptr(), haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128)) || |
|
memcmp(h_HaarFeatures.ptr(), h_HaarFeatures_2.ptr(), haar.NumFeatures * sizeof(HaarFeature64)) ) |
|
{ |
|
bLoopVirgin = false; |
|
} |
|
NCV_SKIP_COND_END |
|
|
|
if (bLoopVirgin) |
|
{ |
|
rcode = true; |
|
} |
|
|
|
return rcode; |
|
} |
|
|
|
|
|
bool TestHaarCascadeLoader::deinit() |
|
{ |
|
return true; |
|
} |
|
|
|
#endif /* CUDA_DISABLER */ |